Dr. Fátrai György:

Magasépítéstan
Széchenyi István Egyetem
Távoktatási tagozat
1995

Irra:

Dr. Fárai György
főiskolai docens
Széchenyi István Főiskola

Műszaki szerkesztő:

Fodor László
főiskolai docens
Széchenyi István Főiskola
Minden jog fenntartva, beleértve a sokszorosítás, a nyilvános előadás, a rádió és televízióadás, valamint a fordítás jogát, az egyes fejezeteket illetően is.
Tartalomjegyzék

Bevezetés ... 6
1. A tantárgy anyaga (III. félév) ... 6
2. A feldolgozandó irodalom ... 8
 2.1 A kötelezően előírt irodalom ... 8
 2.2 Az ajánlott irodalom ... 8
 2.3 A felhasznált irodalom .. 8
3. Követelmények .. 10
 3.1. A vizsga bocsátás feltételei ... 10
 3.2. A vizsgáztatás módszere .. 10
4. Útmutató, kiegészítések a feldolgozáshoz .. 11
4.1 Alapfogalmak .. 11
 4.1.1. A magasépítés szerkezetei ... 11
 4.1.2. Az építési rendszer .. 12
 4.1.3. A szerkezeti rendszer ... 13
 4.1.4. Magasépítési szerkezetek és környezetük kapcsolata 16
 4.1.5. Az épülettufizika szerepe .. 18
 Hövédelem .. 18
 Párávédelem ... 19
 Zajvédelem, hanggátlás .. 19
 4.1.6. Az építési modul ... 20
 4.1.7. Ellenőrző kérdések, feladatok a 4.1 fejezet anyagához 22
4.2. Alaposzások ... 24
 Sikalaposzások ... 25
 Mélyalaposzások .. 28
 Sikalaposzások ... 29
 A sávalapok ... 31
 A pontalapok ... 32
 Gerenda és gerendarác slapok ... 32
 Lemezalapok .. 33
 Különleges sikalapok ... 33
 4.2.2 Mélyalaposzások ... 34
 Süllyeszttet lapok .. 35
 Cölöpalapok .. 35
 Résfal lapok .. 36
 4.2.3. Ellenőrző kérdések, feladatok a 4.2 fejezet anyagához 36
4.3 Víz elleni szigetelések .. 37
 4.3.1. Az épületet támadó nedvességgázok és hatásaik 37
 4.3.2. A nedvesség elleni védelem lehetőségei ... 39
 4.3.3. A vízszigetelések fajtáit .. 40
 4.3.4. Ellenőrző kérdések, feladatok a 4.3 fejezet anyagához 49
4.4 Teherhordó falak ... 49
 4.4.1. Kézi falazóelemekből épített falak .. 51
 Természetes kövekből épített falak .. 51
 Tömör égetett agyagtöpl falazatok .. 52
 Üreges, növelt méretű, kerámia falazóelemes falak .. 53
 Beton és könnyűbeton elemes falazatok ... 54
 Vegyes falak ... 55
 4.4.2. Zsaluzóelemes, felmonolít falak ... 55
 4.4.3. Öntött (monolít) falak ... 56
 Táblázat zsaluzások ... 58
4.4.4. Előregyártott falak ... 63
 Blokkos építés ... 64
 Panelos építés ... 65
4.4.5. Pincefalak ... 68
 Tömörfalas épületek pincefalai ... 68
 Vázas épületek pincefalai .. 70
4.4.6. Lábazati falak .. 71
4.4.7 Ellenőrző kérdések, feladatok a 4.4 fejezet anyagához. 73
4.5 Koszorúk és kiváltók .. 74
 4.5.1 Koszorúk ... 75
 4.5.2. Kiváltók ... 78
4.5.3. Ellenőrző kérdések, feladatok a 4.5 fejezet anyagához 82
4.6 Kémények és szellőzők ... 83
 4.6.1 Kémények ... 83
 Falazott (orosz)kémények ... 84
 Központi fűtők kéményei .. 86
 Gyűjtőkémények ... 87
 Előregyártott elemes kéményrendszerok 89
 Gyárkémények ... 90
 4.6.2 Szellőzők .. 91
Bevezetés

Az emberi tevékenységek mesterséges színtereinek megalkotására az építészet a tudomány, a művészeti és a technika eszközeit használja. Az épületekben megtestesülő komplex téralkotó tevékenység a magasépítés.

A magasépítéstan az épületek szerkezeteinek létrehozására irányuló konstruálási és technológiai ismereteket tülenenően, ezek használati, fenntartási kérdéseivel is foglalkozik.

A magasépítési folyamatok - kölcsönhatásban a természetes és a megépített környezettel - a megvalósulás mellett az épületek "életciklusainak" (felújítás, átalakítás, rehabilitáció) és " halálának " (bontás, újrahasznosítás) körében zajlanak.

A tantárgy ismeretanyaga a tervező-, kivitelező-, üzemeltető-, karbantartó szakemberek számára egyaránt nélkülıhetetlen úgy az ipari gyakorlat, mint a management és az építőszigazgatás területein.

Ez az Útmutató a magasépítés szerteágazó, széleskörű ismeretanyagában való tájékozódást kívánja elősegíteni

- a szerkezetek rendszerezett ismertetésével;
- az egyes szerkezetfajtákkal szemben támasztott követelmények megfogalmazásával;
- a legfontosabb elvi szerkezetváltozatok bemutatásával;
- a fő szerkesztési elvek felállításával;
- és gyakorlati példákkal.

A tantárgy tananyagát a kötelezően előírt ábragyújtemény jelen Útmutatóban hivatkozott ábralapjai és az Útmutató ezekhez kapcsolódó kiegészítései képezik. Az ajánlott irodalom tanulmányozása az ismeretek növelésére és elmélyítésére szolgál.

Az ismeretek birtokbavételét a szöveges anyagrész fix logikus, tömör összefoglalási képessége mellett az ábraanyag méretarányos szabadkézi vázlatokban történő felidézése bizonyíthatja a tanulási folyamatban és a számonkérés során is.

Az elsajátított tananyag alkalmazására, begyakorlására, és a tudásszint felmérésére nyújt lehetőséget az előírt feladatok, megoldása, és az ellenőrző kérdések megválaszolása.

1. A tantárgy anyaga (III. félév)

A tantárgy féléves anyaga a következő fő témakörökre, fejezetekre osztható:
1.1 Alapfogalmak
1.2 Alapozások
1.3 Víz elleni szigetelések
1.4 Teherhordó falak
1.5 Koszorúk és kiváltók

A további fejezetek a tantárgy IV. és V. félévi anyagában szerepelnek. Többek között,

- a térhelhatároló falszerkezetek,
- a válaszfalak,
- a felületképzések, burkolatok,
- a váz-, és csarnokszerkezetek,
- a födémemek és a padlóburkolatok, álmennyezetek,
- a lépcsők,
- a magas-, és lapostetők, szerkezete, szigetelése (illetve héjalása),
- az építési segédszerkezetek,
- az építési munkahely berendezése, épületei, építményei, stb. ...

konstrukciós kérdéseivel, építésével, fenntartásával, átalakítási-, szanálási-, bontási körülményeivel foglalkozunk.

A tárgy épít az Ábrázoló geometria és a Mechanika c. tantárgyak ismereteire és szorosan kapcsolódik az Építőanyagok c. tárgyhoz, de összefügg a Geodézia és a Geotechnika c. tárgyakban tanultak, tanulandók nagy részével is, és megalapozza a Magasépítő speciális stúdium tárgyait. (Épületszerkezetek /szerkezettervezés/, Épülettervezés, Építési segédszerkezetek /tervezése/, Építési technológiák)
2. A feldolgozandó irodalom

Az 1. pont alatti tananyag a szakirodalomban megtalálható, abból elsajátítható. A főiskolai profilkban és képzési szintnek megfelelően az Útmutató egy főiskolai ábragyűjtemény feldolgozását segíti elő.
(A tananyag ismeretbővítésére, begyakorlására, elmélyítésére más

2.1 A kötelezően előírt irodalom

Dr. Koppány Attila: ÉPÜLETSZERKEZETEK TERVEZÉSE tanulfánymány segédlet Hivatkozások: (S/oldalszám-ábralapszám)

2.2 Az ajánlott irodalom

Dr. Gábor László: Épületszerkezetettan I-II.
Tankönyvkiadó, Bp.

Koppány Attila: Épületszerkezetettan I.
NOVADAT, 1994

2.3 A felhasznált irodalom

Dr. Gábor László: Épületszerkezetettan I-IV.
Tankönyvkiadó, Bp.

Bruzsa László: Épületszerkezetek (ábraanyag)
Tankönyvkiadó, Bp.

Dr. Szell László: Magaspépitéstan I-II.
Tankönyvkiadó, Bp.

Dr. Szell László: Építéstechnológia I.
Tankönyvkiadó, Bp.

Lévai Jenő: Épületszerkezetek I-II.
Tankönyvkiadó, Bp.

Dr. Tallós Elemér-Dr. Koppány Attila:
Épületszerkezetek
Tankönyvkiadó, Bp.

Koppány Attila: Épületszerkezetettan I.
NOVADAT, 1994

Reményi Tibor: Építési modulrendszer

Dr. Fekete Iván: Épületfizika kézikönyv
Műszaki könyvkiadó, Bp.

Dr. Karácson Sándor: Épületszerkezetek. Ábragyűjtemény I-II.
Tankönyvkiadó, Bp.
Péli József: Vízszigetelő munka
Műszaki könyvkiadó, Bp
Dr. Fárai György: Építéstechnológia. Ábragyűjtemény I-II
SZIF, Győr
3. Követelmények

A tantárgy elismerésének feltétele: legalább elégséges eredményű vizsga letétele.

3.1. A vizsgára bocsátás feltételei

A vizsgára az a hallgató jelentkezhet aki:

Az útmutatások és kiegészítések alapján, és az ajánlott irodalmak segítségével a tananyagot feldolgozza, vagyis

– a fejezetenként előírt kérdéssorokat szabadkézi vázlatok segítségével írásban megválaszolja, és

– a feladatokat megoldja.

A feldolgozás dokumentumait és a gyűjtött anyagok másolatait, A4 formátumú lapkon, lefűzte, fejezetenként rendezve kell legkésőbb a vizsga előtt két héttel leadni!

Az a hallgató vizsgázhat akinek minden egyes fejezetre kidolgozott anyaga legalább elégséges minősítést kap.

A szabadkézi vázlatokat ceruzzával, de arányosan, a vonalak párhuzamosságára, merőlegességére ügyelve kell elkészíteni! A metszett szerkezetréseket vastagabb vonallal körirve, anyagjelöléssel ellátva ábrázoljuk! A feldolgozandó irodalomban alkalmazott grafikus anyagjelölés mellett színezést is használhatunk. A legfontosabb szerkezeti anyagok közelítő színei a következők lehetnek: talaj - sötétbarna, beton - világoszöld, vasbeton - sötét (krómoxid) zöld, fémek - kék, kerámia - piros, hőszigetelő anyagok - narancssárga, stb.

Egyéni jelölések alkalmazása esetén készítsünk jelmagyarázatot! Az ábrákat lássuk el magyarázó feliratokkal, méretekkel (szabvány, vagy egyéni - de olvasható - "nyomtatott" betütípusok egyaránt használhatók)

A vázolási készség birtokában a mérnöki kommunikációs lehetőségei kitágulnak, ismeretszerzési-, átadási eszköztára bővül.

Az írásos válaszokat rövid, pontokba tömörített felsorolásokkal, egyszerű kerek mondatokkal adjuk meg! A szöveget olvashatóan, kézzel, vagy gépelve (esetleg szövegszerkesztővel) is írhatjuk.

3.2. A vizsgáztatás módszere

A vizsgán két, a hallgató által kihúzott alfejezet (pl. 8.8.8) ismeretanyagát kell rövid felkészülési idő (25...30 perc) után, röviden, komplexen, helyszínen készített rajzos vázlatok segítségével összefoglalni.
4. Útmutató, kiegészítések a feldolgozáshoz

4.1 Alapfogalmak

4.1.1. A magasépítés szerkezetei

A magasépítésben használt szerkezeteket épületszerkezeteknek nevezzük. A különféle, úgynevezett szerkezeti anyagokból különböző rendeltetésű épületek létrehozása céljából funkciójuk szerint az alábbi szerkezeteket alkalmazzuk:

- Teherhordó szerkezetek
- Térelhatároló szerkezetek
- Felszerelő (szakipari) szerkezetek
- Épületgépészeti célú szerkezetek

Az épületszerkezetek az egyes funkciókat (feladatokat) külön-külön vagy egyesítve is elláthatják, ezért beszélhetünk egyesített, ill. szétválasztott funkciójú szerkezetekről. Például a hagyományos tömör falak teherhordó és térelhatároló funkciókat is elláthatnak egyben, míg a vázas szerkezetű külső falak estében a terhek hordása a váz, a hő- és hangszigetelt térelhatárolás pedig a kitöltött falazat feladata.

A funcionális felosztáson belül a legfontosabb szerkezetcsoportok (szerkezetfajták vagy szerkezeti alrendszerek) az alábbiak:

Teherhordó szerkezetek:
- alapozások
- falszerkezetek
- vázszereksetek
- fődémek
- tetőszerkezetek
- lépcsők
- térbeli teherhordó szerkezetek

Térelhatároló szerkezetek:
- homlokzati térelhatároló (nem teherhordó) falak
- válaszfalak, térelválasztó szerkezetek
- almennyezetek
- kettős padlók
- nem teherhordó térlefedések

Felszerelő (szakipari) szerkezetek
− szigetelések (víz-, nedvesség-, pára-, hő-, hangszigetelés)
− fedélhájazatok
− nyílászáró szerkezetek
− falburkolatok
− padlóburkolatok

Épületgépeszeti célú szerkezetek

− vízellátás
− csatornázás
− energiaellátás (elektromos, gáz, egyéb)
− informatikai rendszerek (telefon, médiák, PC, biztonsági ber.stb)
− hőháztartási berendezések (fűtés, hűtés, klíma, stb.)
− felvonók stb.

A felsorolt szerkezetek alkalmazásának alapvető célja az épület rendeltetésének megfelelő téralkotás. Az egyes szerkezetek a konstruálás és megvalósítás során kialakított szerves egységben alkotják az épület logikus szerkezeti rendjét.

4.1.2. Az építési rendszer

Az egyes épületek előállítását szolgáló
− szerkezeti megoldások,
− építési technológiák, és
− építésszervezési módszerek összességét építési rendszerek nevezzük.

Egy-egy építési rendszer meghatározott térstruktúrájú, de különböző méretű és alaprajzú, és eltérő igényszintű épületek építését teszi lehetővé.

Az építési rendszer zárt, vagy nyitott aszerint, hogy más rendszer elemeit képes-e befogadni illetve saját elemeit más rendszerekhe exportálni.

Az építési technológiák a szerkezeti anyagokból félgyártmányok, épületelemek, épületszerkezetek (alrendszerek, komponensek, szerkezetrészek, szerkezeti elemeik) előállítására szolgáló munkafolyamatok (szállítási, tárolási, mozgatási, anyagalkatás, beépítési műveletsorok) végrehajtási módozatait, körülményeit és ésszerű sorrendjét határozzák meg.

Az építési rendszer hatékony alkalmazását integrált információs, vezetési, és irányítási szervezési rendszer teszi lehetővé a működtető szervezetek (tervező, beruházó, gyártó, készletező, kivitelező) számára.

Egy-egy építési feladathoz rendelt építési rendszer kiválasztását az alábbi kérdéssor megválaszolása segítheti:

− Egyedi tervezésű, vagy sorozatban készíthető, esetleg tipizálható az épület?
− Az épités időtartamának van-e gazdasági jelentősége? (pl.: a korábbi üzem behelyezés hoz-e hasznot?)
4.1.3. A szerkezeti rendszer

Adott építési rendszerben létrehozott épület teherhordó és térelhatároló szerkezeteiből kialakított szerkezeti rendszer

- igazodik az épület térigényeihez,
- figyelembe veszi az erőtani adottságokat, lehetőségeket és követelményeket.

Az építési hierarchiában elfoglalt helyük szerint a szerkezeti rendszereket alrendszerek, az alrendszereket komponensek, a komponenseket szerkezetesek, a szerkezeteseket szerkezeti elemek alkotják. A szerkezeti elemeket alkatrészekből (félgárgamányok) és szerkezeti anyagokból állítják elő. A szerkezeti anyag tehát közvetlenül szerkezeti elem előállítására szolgáló természetes anyag (pl. kö), vagy (építőanyag) ipari termék

Szemléltetésül álljon itt az alábbi példa:

Rendszer: maga az épület összes szerkezetével
Alrendszerek: a közbenso komplex (teljes) fődém
Komponensek: a teherhordó fődém (nyersfődém), a padló rétegrend (több rétegű szerk.)
Szerkezetesek: hangszigetelő réteg
Szerkezeti elemek: főlába csomagolt hangszigetelő tábla
Alkatrészek: védőfólia, ásványgyapot tábla,
(szerkezeti anyagok) homokterítés
Anyagok: laza ásványgyapot, műgyanta

Épületeinket a következő szerkezeti rendszerek alkalmazásával hozhatjuk létre:

Tömörfalas szerkezeti rendszer

A rendszer jellemzője, hogy a terek függőleges elhatárolására, és részben osztására a teherhordó falszerkezetek (úgynevezett felmenő, vagy főfalak) szolgálnak.

Jellemző alaprajzi elrendezések:
- hosszfas, harántfas,
- vegyes, félvázas (ámeneti megoldás)

Alkalmazott (szerkezeti) anyagok:
- föld,
- vályog,
- agyag,
- tömör égetett agyagtéglá,
- vázkkerámia falazóblokk,
– vegyes anyagú kézi falazóelemek, kő, kő+téglalap,
– vegyes falazó anyagok, beton, vasbeton, könnyűbeton,
– kis-, közép-, és nagyblokkok könnyűbetonból,
– előfalazott téglatéglablak,
– vegyes anyagú panel elem

A tömörfalas szerkezeti rendszerű épületek hagyományos változatai:
– kőfal - boltozat - fafödémparafió
– téglafal - téglaboltozat - acélgerendás vagy vasbeton födémparafió
– beton vagy vasbetonfal - monolit vasbeton födémparafió (egyedi zsaluzatókkal készítve)

A tömörfalas szerkezeti rendszerű épületek korszerű építésmódjai:
– öntöttfalas építési eljárások (célzsaluzatokkal, pl.: csúszo-zsaluzás)
– nagyméretű, kézi falazóelemek, könnyű gerendák, beléstestek használata (pl.: vázkerámia elemes szerkezetek)
– előregyártott (daruval mozgatható) nagyelemek alkalmazása (blokkos és panelos építésmódok)

Vázas szerkezeti rendszer

A vázas szerkezeti rendszerű épületekben a teherhordó vázelemekre épített térelhatároló, térosztó és térlefedő szerkezetek alkotják a kívánt térstruktúrat. Az általában lineáris vázelemek húzott-nyomott rudak, vagy összetett ígénybevételű (hajlított, nyírt, külpontosan terhelt) gerendák illetve vázpillérek (oszlopok) lehetnek. A vázat iv- és keretszerkezetek, valamint térbeli rácsokat is képezheti. A vízszintes térosztó-lefedő szerkezeteknek gyakran függőleges teherhordó és vízszintes merevítő szerepük is van (fődémek, tetőszerkezetek).

Jellemző alaprajzi elrendezések:
 hosszváz, harántváz, vegyes-, és egyesített váz

Alkalmazott (szerkezeti) anyagok:
 fa, kő, téglalap, beton, monolit (helyszínen zsaluzatba öntött) vagy előregyártott vasbeton, acél, alumínium, műanyag, stb.

A vázas szerkezeti rendszerű épületek hagyományos változatai:
– hagyományos favázás szerkezet
– monolit vasbeton pillér-gerenda váz - monolit vasbeton födémparafió
– melegen hengerelt acélszelvényekből alakított pillér-gerenda váz - monolit vasbeton födémparafió (mered acélbetétekkel)
A vásas szerkezeti rendszerű épületek korszerű változatai:

- többször felhasználható (cél) zsaluzatos, öntött építésmóddal készített pillérváz monolit vasbeton lemezfödém (pl.: gombafödém)

- csúszőszsaluzással épített belső (merevítő) mag vasbeton vagy acél vászzerkezet vb (vasbeton) födém

- előregyártott elemekből készített vasbeton vászzerkezet e.gy. (előregyártott) pallós vb födém e.gy. vb falpanel

- többszintes vászszlopok a térszínen e.gy. vb vagy acélszerkezetű födének (csoportos födémemelési eljárással a végleges födémszintekre emelve)

- előregyártott elemekből szerelt könnyű acélváz bennmaradó, együtt dolgozó zsaluzású (pl.: acél trapézlemez) vb födém
Térbeli és komplex (többfunkciós) szerkezeti rendszerek

- lemezművek:
 vízontó hajtótollal, illetve redőzőtt (általában vb) síklemezek

- héjszerkezetek:
 vízontó íves síkbafejtható vagy torzfelületű (elsősorban vb) szerkezetek

- térácsok:
 rüdélémekből (acél, alumínium, fa, műanyag) helyszínen szerelt, vagy mezőkben előágyártott szerkezetek

- függesztett szerkezetek:
 peremtartókból, függesztő-, és feszítőkábelekből álló tartószerkezetek könnyű térlefedéssel

- túlnyomásos szerkezetek
 légnyomással felfújt egyrétegű sátrak, vagy kétrétegű, pneumatikus túlnyomású felületszerkezetek műszer textiliából készítve

- térelemes rendszerek:
 e.gy. nehéz vasbeton dobozelemek, ill. könnyű vázas térelemek csoportja, egymásra, vagy vázszerkezetbe építve

4.1.4. Magasépítési szerkezetek és környezetük kapcsolata

Az épület és (makro-) környezete kölcsönhatásban van. Az épületen belül, mint a szerkezetek (mikro-) környezetében szintén érvényesül a hatás-ellenhatás elve. Az épületszerkezeteket érő hatásokat az alábbiak szerint csoportosíthatjuk:

Külső erőhatások:

- szélnyomás és szélszívás (szélterhek)
- földnyomás
- talajvíznyomás
- hóterhek

Belső erőhatások:

- önsúly (a saját tömeg és a " hordott " szerkezetek tömegének hatásai)
- hasznos terhek (a rendeltetésszerű használat hatásai)
- gátolt elmozdulásokból származó érök (hő okozta, és egyéb térfogatváltozások, egyenlőtlen süllyedések, stb. hatásai)

Egyéb hatások
különleges erőhatások: dinamikus hatások (az épület körüli forgalom, építési munkák, stb. következményei); földrengés; tűzhatásra fellépő erők (pl.: acélszerkezetek kihajlását, kivetődését okozhatják)

nedvesítő hatások: a légköri csapadék hatása; a talajban lévő víz nedvesítő hatásai (talajvíz, talajnedvesség, talajpára); a használati és az üzemvi vizek nedvesítő hatásai; a belső légtér páratérheléséből származó páradiffúzió (páravándorlás) és páralecsapódás

hőhatások: a külső hőmérséklet ciklikus (napi, évi) változásainak, és a külső- belső hőmérsékletkülönbség hatása; (speciális formája, a fagyhatás különösen nedves anyagok, szerkezetek esetén veszélyes); a tűz hő- gyújtó-, és égető hatása

 kémiai hatások: a légkör és a csapadék vegyi hatásai (füstgázok, savas esők, stb.); a talajban lévő víz kémiai hatásai; a használati és üzemvi vizek kémiai hatásai

hanghatások: külső és belső hangforrások által keltett lég és/vagy testhangok formájában terjedő rezgések hatásai

fényhatások: (pl.: az UV / ultraviola / tartomány hatása)

sugárzások

biológiai hatások: a talaj és a légkör hatásai; férfék, rágcsálók, növényi kártevők, mikroorganizmusok

Az épület és szerkezeteinek környezetükre, köztük az emberre gyakorolt hatásainak figyelembevétele a környezetbarát építésmódok és az "emberbarát" épületszerkezetek kialakulásához vezetett.

Ilyen épületek és szerkezetek létrehozhatók:

- természetes anyagok alkalmazásával;
- az emberi egészségre káros anyagok (mérgező, sugározó) és hatásaik kiküszöbölésével;
- egészséges lakókörnyezet kialakításával (pl.: bioházak, zöldterület visszapótlás, zöldtetők, tetőkertek, zöldhomlokatok, stb.);
- energiatakarékos és energiatudatos tervezéssel (fokozott hővédelem, "tiszta" (nem fosszilis) energiaforrások alkalmazása (napházak, biogáz, szélenergia), kis energiatartalmú (építés-fenntartás-bontás során is) és vagy újra hasznosítható anyagok, szerkezetek felhasználása)
- érzékszervi-, lelki-, és erkölcsi szempontok figyelembe vételével (szép, "lélegző", melegtapintású, hangszigetelt, hőhidmentes (nem penészsedő), élettartamra méretezett és összehangolt szerkezetek építése).
4.1.5. Az épületfizika szerepe

A fizika tudományának speciális területe az épületekben, azok helyiségeiben, és szerkezeteiben természetes úton lejátszódó (épület-) fizikai folyamatok vizsgálata. Az épületfizika azokat a folyamatokat és jelenségeket kutatja, amelyek működ(tetés)éhez tudatos emberi beavatkozással termelt energia nem szükséges, így a hő-, a pára-, a levegő-, a természetes fény-, és a hang keletkezésének, terjedésének és forgalmának feltételeit, körülményeit. A magasépítés területén megoldandó épületfizikai feladatokat az épületekkel és szerkezeteikkel szemben támasztott azon követelmény határozza meg, hogy funkcióiknak károsodás nélkül feleljenek meg, és biztosítsák (használatuk teljes időtartamára) a tartós emberi jelenlétének egészséges körülményeit.

Fentieknek megfelelően tehát az épületfizika hő- és pára (elleni) védelemmel, levegőforgalommal (szellőzés, szellőztetés), zaj (elleni) védelemmel (szükebben: hanggátlás), a természetes megvilágítással, és az épületfizikai hatások komplexitásával foglalkozó fejezetei fontosak a magasépítési gyakorlat számára is.

Az alábbiakban a legfontosabb alapfogalmakat és szempontokat foglaljuk röviden össze.

Hővédelem

A hőhatások elleni védelem, és az épületek rendeltetés szerint megkívánt belső hőmérséklete folyamatos biztosításának eszköze az energiaigényes fútés, ill. hűtés mellett a hatékony hőszigetelés.

A hővándorlás telepítési (tájolás, növényzet), építészeti (hőigény szerint differenciált helyiségcsoportosítás, zár alaprajzi és tömegalkítás), és szerkezetalkítási (ányékolók, fényvisszaverő felületek, nagy hőtehetlenségű szerkezetek, hulladékhő hasznosítók) megoldásokkal is jelentősen csökkenthető.

A jó hővédelem megteremti és fenntartja az épület energia- és költségtakarékos hőegysélyát.

A hővédelem és a hőszigetelés szempontjából kritikus szerkezetek:

- a homlokzatok
- a zárófödémen (padlásfödémen, lapostetők, loggia födémen, hőszigetelt magastetők) felülről húló szerkezetek
- a pince- és árkádfödémen (alulról húló szerkezetek)
- homlokzati nyílászárók
- homlokzati kiváltók, áthidalók, koszorúk, teherhordó vázszakaszok
- a homlokzatokhoz kapcsolódó teherhordó szerkezetek
- a különböző használati, üzemi hőmérsékletű helyiségek közötti térelválasztó szerkezetek (válaszfalak, közbenső födémen)
- kémények, szellőzők, gépészeti csatornák, aknák határoló szerkezetei

A hőszigetelés módját, és szükséges mértékét a szabvány (MSZ) előírásainak figyelembevételével tervezik, általános épületfizikai, (pl.: hőáramlsűrűség, hőátdási tényező) anyag-, (pl.: hővezetési tényező, fajlagos hőelnyelési tényező) szerkezeti-, (pl.:hőátáramlású tényező) és a zárt térre vonatkozó (pl.:hőfokmodulus)

A jó, vagy elfogadható hőszigetelésű határfelületeket szerkezeti-, illetve geometriai okokból jó hővezető tulajdonságú, illetve fajlagosan nagy hőleadó felületű szakaszok, ügynevezett **hőhidak** szakítják meg. A hőhidak - bár a hőhazartást csak kisebb mértékben rontják - páralecsapódásokhoz, penészgombák élettelételeinek megteremtéséhez vezethetnek.

Párvédelem

Az épületek belső tereiben pára képződik. A külső- és a belső tér légállapotától (hőmérséklet, nyomás, páratartalom) függ, hogy a vízgőz egy része a hidegebb határfelületeken lecsapódik-e, más része a páraátérsztő (porózus) határolószerkezetekbe vagy/és azokon áthatol (diffundáló). A párvédelem feladata az ily módon kialakuló **nedvesítség megelőzése** illetve hatásának mérséklése.

A határfelületek lehülését a határoló szerkezetek jó hőszigetelése csökkenti. A páradús és nyomás alatt lévő (magas relatív nedvességtartalmú) levegő páratartalmát bezárás helyett hatékonyabb nyomáskiegyenlíthessel (a páraátérsztő rétegek összehangolt sorolásával, kisellőztetéssel) **elvezetni**.

Mindenképpen meg kell akadályozni a hőszigetelő anyagok átnedvesedését a **harmatpont** alatti hőmérsékleten kicsapódó pártól (további lehülést és újabb nedvességakkumulációt okozhat). Más szerkezeti anyagok esetén is károsodásokhoz vezet, ha a diffúzió a **fagypont** alatti hőmérséketű (fagy-)zónában zajlik.

Zajvédelem, hanggátlás

A növekvő zajterhelés hatásainak mérséklése az épületek használati értékét jelentős mértékben emelheti. A keletkező zajokat lehatalmasabb módon a forrásnál (pl.: hangelnyelő alapozások, hangszigetelő burkolatok, izolált körülépítés) lehet **csökkenteni** építészeti-szerkezeti eszközökké. A kibocskázott zajok ellen a körültekintő város-, és területrendezés (akusztikai szempontokat is figyelembevevő üvezeti felosztás védősávokkal; autópályák, vasutak, légifolyosók vonalvezetése; stb.), helyes telepítés (védőzónák, védőtávolságok), harmonikus belső elrendezés (zajszintenkénti funkcionális csoportosítás, a zajforrások figyelmet fordító elhelyezés) és a zajok közvetlen terjedését fékező, akadályozó **hanggátlás** nyújt védelmet.

A hangok terjedése a levegő, és a szilárd testek közegében zajlik

A léghanggátlás mértéke a léghang terjedési útjába állított (akusztikus) tél elhatároló-választó szerkezet egységnyi felületének tömegével arányos. (a vastag, nehéz falak jó léghanggátló tulajdonságúak)

A szilárd testekben átadódó hangrezgések (**testhangok**) terjedését a közvetítő szerkezet rétegeltességének növelésével, eltérő akusztikus tulajdonságú rétegek beépítésével (akár bezárt légréteg formájában) **gátolhatjuk**.
A szilárd épületszerkezetek csatlakozási pontjai, vonalai, felületei jól közvetítik a hangokat, hanghidakat, kerülőutas hangvezetést létrehozva, ezért itt hanglágy kapcsolatokat kell alkalmazni.

4.1.6. Az építési modul

Az építés története során mindig voltak törekvések az épületek és alkotóelemeik méreteinek, arányainak racionális, vagy misztikus ihletésű logikai rendszerbe foglalására.

A mai építési gyakorlatban is szükség van egy összehasonlító méretrendszer alkalmazására elsősorban az iparosított, nagyfokú előregyártási hányaddal dolgozó építési rendszerek és módok alkalmazási területein.

A méretkoordinált elemek és termékek térbeli elhelyezésére, kapcsolataik rendezésére szolgál a háromdimenziós modulháló. (általában derékszögű /ortogonális-parallel/ rendszert használunk, de létezik ferdeszögű, és centrális hálózat is)

A modulrendszer alapegysége az alapmodul (M) amely Európában 10 cm-ben rögzített hosszúságú szakasz (modulsík-osztásköz). A gyakorlatban többszörözőt, úgynevezett multimodul osztású hálókat is használunk. Közismert multimodul sorok: 3 M, 6 M, 9 M, 12 M, 15 M, ... , 30 M, ... , 60 M, ... méret sorozat, amelyet elsődleges (primér) szerkezetek tervezése, hálózatba illesztése során használunk. A másod-, és harmadrendű elemekhez képzett (többszörös vagy tört) modultávolságú szekunder, és tercier hálózatok képezhetők.

A modulrendszer alapegysége az alapmodul (M) amely Európában 10 cm-ben rögzített hosszúságú szakasz (modulsík-osztásköz). A gyakorlatban többszörözőt, úgynevezett multimodul osztású hálókat is használunk. Közismert multimodul sorok: 3 M, 6 M, 9 M, 12 M, 15 M, ... , 30 M, ... , 60 M, ... méret sorozat, amelyet elsődleges (primér) szerkezetek tervezése, hálózatba illesztése során használunk. A másod-, és harmadrendű elemekhez képzett (többszörös vagy tört) modultávolságú szekunder, és tercier hálózatok képezhetők.

"az épületbe munkát és mesterségbeli tudást kell fektetni, hogy az elrendezés szépen méretezett és arányos legyen"
- tengelyraszteres (folyamatos) hálók; (közvetlen elemsoroláshoz)

- megszakított, vagy szalagraszteres hálók; (betételemes soroláshoz)

- kombinált, vagy vegyes raszterű hálók

A 4-2. ábra is segít a legfontosabb alapfogalmak megértésében:

- modulméret: az alap illetve a képzett modulok többszöröse vagy törtrésze

- modul méretlépcső: modulméretű méretkülönbség

- betét (semleges zóna): a koordinált modulhálót megszakító - párhuzamos modulsíkokkal határolt - térköz diszlokált elemek (betét, dilatációs hézak, stb.) számára
- szerkezeti méret: elemek, szerkezetrészek, berendezések előírt elhelyezési (beépítési) hégaggal csökkentett mérete
- méretkategóriák: koordinált méretek, szerkezeti méretek, hégag illetve betéméretek

4.1.7. Ellenőrző kérdések, feladatok a 4.1 fejezet anyagához

1. Milyen szerkezetek és szerkezetsoportok használatosak a magasépítés területén ?
2. Mit értünk az épületszerkezetek funkcionális szerepének, milyen magasépítési folyamatok részesei?
3. Mi a szerkezetalkapás alapvető célja?
4. Mi az építési rendszer, és mire szolgál?
5. Mi a technológiai ismeretek és a szervezési módszerek szerepe az építésben?
6. Értékelje az építési rendszer nyitottságát!
7. Melyek az építési rendszer megválasztásának legfontosabb szempontjai?
8. Mit értünk az épületek szerkezeti rendszerének fogalmán?
9. Ismertesse a szerkezethierarchiát példákkal szemléltetve!
10. Milyen szerkezeti rendszerű épületeket ismer? Gyűjtsön építészettörténeti és jelenkori példákat!
11. A különböző szerkezeti rendszerek alkalmazásának milyen korszerűsítési lehetőségei vannak? Nevezzen meg ilyen építésmódokat!
12. Milyen a térbeli és a komplex szerkezet?
13. Ismertesse a magas épületeket és szerkezeteiket érő erőhatásokat! Becsülje meg a hatások nagyságrendjét kN/m -ben (1, 10, 100,....?)!
15. Milyen elemekre bontható a szerkezet-épület-környezet hatás-ellenhatás rendszere?
16. Mutasson be környezetbarát építésmódonkot!
17. Milyen az "emberbarát" épületszerkezet?
18. Mivel foglalkozik az épületfizika tudományága?
19. Melyek a hővédelem feladatai és eszközei?
20. Ismertesse a hőszigetelés szempontjából kritikus szerkezeteket!
21. Mi a hőhíd? Mutasson be példákat! Keressen megoldásokat a megszüntetésre!
22. Milyen hatások ellen, és hogyan keres megoldásokat a párávédelem?
23. Állítsa fel a párvédelmi feladatok fontossági sorrendjét!
24. Mi a hanggátlás szerepe a zajvédelemben?
25. Ismertesse a hanggátlás szerkezeti lehetőségeit! Nevezzen meg ilyen szerkezeteket!
26. Mi az úgynevezett hanglágy kapcsolatok lényege és szerepe?
4.2. Alapozások

Az épületek (és építmények) alapozása felveszi a közvetve és közvetlenül átadó összes terheket (ld.: 4.1.4) és áthárítja az altalajra.

Az alapozásokkal szemben támasztott követelmények:

- statikai állékonyság (süllyedés, elcsúszás, billenés, stb. ellen)
- káros feszültségek kialakulásának megelőzése az épület összes szerkezeteiben és az altalajban
- ellenállóképesség járulékos hatásokkal (ld.: 4.1.4) szemben
- a fenti követelmények hatékony, de gazdaságos kiélégítése helyes anyag-, szerkezet-, és alapozási mód választással

Az alapozás az épület és a talaj közötti kapcsolatot teremti meg, ezért anyaga, szerkezete, készítésmodja egyfelől az épület tulajdonságaitól, másfelől a talajviszonyoktól függően más és más lehet.

Alapozást befolyásoló legfontosabb épületjellemzők:

- az épület méretei, arányai - a terhelés mértéke
- az alaprajz és a tömeg tagoltsága - a terhelések eloszlása
- az épület szerkezeti rendszere - a teherátadás módja (vonalmenti, pontszerű, síkfelületen eloszló, stb.)
- a tartószerkezet statikai erőjátékának jellemzői (szabadságfokok, mozgásérzékenység)

A talajviszonyok alapozásra ható jellemzői:

- fizikai jellemzők
- kémiai jellemzők
- talajrécsegődés
- talajvízviszonyok

Az alapozási mód megválasztásakor figyelembeveendő egyéb fontos szempontok:

- a helyszín (esetleg kedvezőtlen) adottságai (pl.: alábbányászottság, üregeltség, csúszásveszély, belvíz)
- az épület gazdasági értéke, tervezett élettartama,
- az építési idő lerövidítésének jelentősége a gépesíthatóság, a prefabrikációs (előregyártási) fok, a téliesíthatóság függvényében
- a lehetséges kivitelezők szakmai felkészültsége, technológiai felszereltsége, kapacitása

A talajok tulajdonságainak meghatározására szolgáló módszerek ismertetése és a terhelt talajok viselkedésének vizsgálata a Geotechnika c. tantárgy feladata.
A terhelt talajréteg mélységi helyzetének és az épület-általaj közötti teherközvetítés módjának függvényében beszélhetünk:

- síkalapozási módokról (a felszínközeli teherhordó réteg síkfelületen eloszló közvetlen terhelést kap - síkbeli feszültségi állapot alakul ki), és
- mélyalapozási módokról (a mélyebben fekvő teherhordóréteg - közvetítő elemek által terhelt - általában térbeli feszültségi állapot jön létre)

Különféle szerkezeti anyagokból az alkalmazott építéstechnológia szerint
- helyszínen készített, és
- előregyártott elemekből
összeállított alapozási szerkezetek építhetők.

A leggyakoribb alapozási megoldások a következők:

Síkalapozások
- sívalapozás (4-3. ábra)
- pontalapozás (4-4. ábra) (talp-, szoliter-, tömb-, kehely-, papucsalapok)
- gerenda (szalag-) és gerendarács alapozás (4-5., 4-6. ábrák)
- lemezalapozás (4-7. ábra)
- különleges síkalapozások (héj-, ék-, árbóc-, stb. alapozások)
A SÁVALAPOZÁS SÉMÁJA ÉS ERŐJÁTÉKA

4.3. ábra

A PONTALAPOZÁS SÉMÁJA ÉS ERŐJÁTÉKA

4.4. ábra
A GERENDA ALAPOZÁS SÉMÁJA ÉS ERŐJÁTÉKA

4-5. ábra

A GERENDARÁCS ALAPOZÁS SÉMÁJA ÉS ERŐJÁTÉKA

4-6. ábra
Mélyalapozások

- kút- (4-8. ábra), és szekrényalapozás (süllyesztett alapozások)
- cölöpalapozás (4-9. ábra)
- résfalas alapozás
Sikalapozások
A sikalapozás egyszerű, gazdaságos és célszerű módszer.

Sikalapozást lehet készíteni, ha
– a felszínközelben kellő vastagságú teherbíró talajréteg van,
– a várható süllyedéskülönbségek az épületre nem károsak,
– a felszínközeli réteg(-ek) teherbírása csökkent ugyan, de az épület viszonylag könnyű,
– a mélyebb alaptömb többleterhe kicsi,
– a terhek nagyobb területen eloszthatók,
– a talajcsere, javítás vagy szilárdítás gazdaságos.

Az alapsík minimális mélységét a teherbíró rétegek helyzete mellett az úgynevezett fagyhatár is korlátozza. Hazánkban ez azt jelenti, hogy a térszín alatt legalább 80...100 cm mélységben kell az alapsíkot kialakítani, hogy a fagy hatására képződő "jéglencsék" károsító hatásait megelőzzük.

Különféle okok miatt az alapozás síkja épületen belül is változhat:
– a teherhordó réteg nem vízszintes,
– lejtős a terep,
– az épület részben alápíncézett.

Az alapozási síkok minden esetben lépcsőzve követhetik a terep, a teherbíró talajréteg felületét. A hirtelen nagymértékű szintváltás káros feszültséghalmozódásokhoz, repedések kialakulásához, tönkremenetelhez vezethet, ezért teherbíró rétegen belül (pl. a részben alápíncézett épület esetén) is kerülni kell. (4-10. ábra)
Szomszédos épületek csatlakozó alapsikjait azonos mélységben kell felvenni, mert
− meglévő épület melletti sekélyebb alapozás annak oldalfalára, pincefalára káros
oldalnyomást fejt ki,
− meglévő épület melletti mélyebb alapozás veszélyezteti annak állékonyságát, ezért ilyen
esetben szakaszos aláfalazás (betonozás) módszerével -dúcsló védelme mellett - a régi
alapokat le kell mélyíteni az új alapozás síkjáig ! (4-11. ábra)
A sávalapok

A legegyszerűbb sikalapozási módszer a sávalapok készítése. A fagyálló szerkezeti anyagokból, (termékő, tömör égetett agyagtéglá, csömöszölt és "üsztatott" beton, vasbeton) készített alaptestek általában a tömörfalas szerkezeti rendszerű épületek alapozására szolgálnak, szemcsés és kötött talajokban. A falszerkezetet teljes hosszúságában alátámasztó (tehát hossztengelye mentén vonalszerűen terhelt) alaptestek derékszögű négyszög, lépcsősen, vagy trapézalakban kiszélesített keresztmetszetűek.

A sávalapozás sémája és erőjátéka a 4-3. ábrán, a különböző szerkezeti anyagú sávalapok jellemző keresztmetszetei pedig az S/1-1.ábralon láthatók.

A viszonylag kis felületen (megközelítően vonalmentén) átvett terheket az alaptestnél gyengébb teherbíró-képességű altalajra csak nagyobb felületre szétszóva lehet áthárítani, ezért van szükség gyakran kiszélesített keresztmetszetű sávalapokra. A kiszélesítés mértékét a
szerkezeti anyagokra jellemző teherátadási szög korlátozza (ennél laposabb szög alatt a nyomófeszültségek nem adódnak át az adott anyagban).

A keresztmetszetek egyéb méretkötöttségeit szerkezeti és technológiai indokokkal magyarázhatjuk. (kötési szabályok, építési pontatlanságok kiküszöbölése, zsaluzhatóság, stb.)

A vasbetonból készített (tehát húzó-, hajlító-, és nyíróigénybevételek felvételére is alkalmas) sávalap a terhek áthárítását keresztmetszeti síkban működő (fordított) konzolként teszi.

A falazással készített szerkezetek és az altalaj köze kiegynlítő-teherelosztó ágyazati réteg, vasbetonszerkezeteknél (a vasszerelés védelmére) szerelőbeton-réteg kerül.

A betonozott alaptestek - amennyire lehetséges - termelt talaj földpartok köze, illetve zsaluzatokba kerülnek, döngölt, csömöszőlt, vagy vibrált tömörítéssel, gyakran terméskő (vagy jó minőségű betondarabok) "úsztatásával".

A pontalapok

A sávalapok hossza a szélességük három és félszeresét meghaladja. A rövidebb falszakaszok, félvázas és vázas szerkezeti rendszerű épületek pillérei, oszlopai teherátadására szolgálnak a pont-, vagy tömbalapok (más néven: szoliteralapok), szemcsés és kötött talajokban.

A sávalapokkal azonos szerkezeti anyagokból azonos keresztmetszetekkel, a (megközelítően pontszerűen) terhelő pillér, vagy oszlop keresztmetszetétől függően négyszög (négyzet, téglatest, sokszög, vagy kör alaprajzú hasáb, henger, csonka gúla, lépcsős "piramis", vagy csonka kúp alakú pontalapok készíthetők.

A csak nyomásra igénybevethető anyagú pontalapok kiszélesítése a teherátadási kúpon belül célszerű, míg a vasbeton pontalapok kétirányban teherhordó konzolos szerkezetként értelmezhetők.

A pontalapozások sémája és erőjátéka a 4-3. ábrán, jellemző keresztmetszeti és alaprajzi formálása az S/2-2. ábralapon látható.

A vasbeton pilléralapozás előregyártott kehelyalap test készítésével és beépítésével is megoldható.

Gerenda és gerendarács alapok

A gerenda és gerendarács alapok kizárólag vasbetonból építhetők. A hossz-, és/vagy harántvázas szerkezeti rendszerű épületek gyengébb altalajok esetén nem alapozhatók pontalapokkal gazdaságosan, mert túl nagy alapterületű alaptestekre lenne szükség. A pillérsorok alatt végigvezetett (fordított) többtámaszú tartóként működő hajlított gerendatartó hatékonyabb teherátadásra képes (befogott pillérekkel az épület merevítésében is részt vehet).

A gerenda (más néven: szalag-) alapok szerkezeti kialakítása az S/3-3. ábralapon, sémája és erőjátéka a 4-5. ábrán látható.

A hajlított gerenda-keresztmetszet (a széles nyomott betonövvel) a vasbetonszerkezetek alakításának jellegzetes példája (a húzóigénybevételeket vasalás veszi fel).
Vegyes és egyesített vázas szerkezeti rendszerű épületek esetén, vagy ha kétirányú merévítésre is szükség van
gerendarács alapozás készíthető.
A gerendarács alapozás erőjátéka és sémája a 4-6. ábrán található.

A (fordított) kétirányban teherhordó tartórács szerkezeti működésének alapfeltétele, hogy a kereszteződő gerendaalapok monolit egységet képezzenek (összefüggő nyomatékbíró vasalás keresztben is, egyidejű zsomaluzás, betonozás).

A gerenda és gerendarács alapok bonyolult, időigényes zsomaluzási munkát, talajvíz (különösen agresszív) esetén költséges víztelethenés módshoz alkalmazását, majd tagolt, sérülékeny szigetelést igényelnek, a talajvíznyomást pedig külön leterhelő szerkezettel kell felvenni.

Lemezalapok

Egyes terhelési és talajadottságok esetén (kis teherbírású talaj, nagy terhek, egyenlőtlen tehereloszlás, stb.) túlságosan nagy alapterületű sáv-, vagy pontalap, vagy túl sűrű, és széles gerenda, illetve gerendarácsalapok használatára lenne szükség. Ezekben az esetekben - valamint ha a talajszint alatti terület, szerkezeteket a talajvíznyomási vagy agresszív hatásai ellen védeni, szigetelni kell - célszerű a teljes épületet összefüggő lemezalapra helyezni.

A lemezalapozás sémája és erőjátéka a 4-7. ábrán látható, szerkezetváltozatai és részletmegoldásai az S/4-4. .5-5. .6-6. ábralapon találhatók.

A lemezalapok egy-egy, vagy kétirányban teherhordó *hajított szerkezetek*, amelyek igénybevételeit a "fordított födém" elv alapján határozhatjuk meg. (A támaszeröket az ismert fal-, vagy pillérterhekkel helyettesítve számíthatjuk ki síkfelületen fellépő megoszló talajfeszültséget, amelynek a talaj határfeszültsége alatt kell maradni.)

A lemezalapok vasbetonból készülnek. A talajvíznyomásból fellépő felhajtóerők ellen, vasbeton ellenlemezként is dolgozó lemezalapok, vagy csömöszölt beton leterhelő lemezek szolgálnak.

A lemezalapok szerkezetváltozatai:
- sík vasbeton lemezalapok,
- bordás vasbeton lemezalapok (főfalak alatti, és/vagy pillérek közötti erősítés),
- kazettás vasbeton lemezalapok (további közbenső, kétirányú fiókbordákkal),
- fordított gomafődém típusú vasbeton lemezalapok (átszúródás elleni gomaféjes pillércsatlakozású síklemek).

A lemezalapok készítése általában nagyméretű (dúcolt, vagy rézsűs partfalú) pincetömb kiemelést, és a teknőszerűn kívülről kör-beszigetelt szerkezet szilárdulásáig víz távoltartást igényel.

Különleges síkalapok

A különleges síkalapok néhány szerkezetpéldája az S/12-12. ábralapon látható:
- monolit és előregyártott vasbeton héjalap (pont-, gerenda-, és lemezként),
- vasbeton ékalakú sávalap,
- húzott alap,
- árbócalap,
- vasbeton fejgerendás beton vagy talaj-, téglatörmelékbetong anyagú rövid fúrt cölöpalap.
4.2.2 Mélyalapozások

A síkalapozásnál költségesebb, bonyolultabb, nagyobb technikai felkészültséget igénylő mélyalapozást akkor kell készíteni, ha a síkalapozás műszaki szempontból nem felel meg, mert

– a felszínközeli talajréteg nem kellő teherbírású,
– a helyszíni körülmények kedvezőtlenek (vízkimosás, csúszásveszély, stb.), vagy
– gazdaságtalan a járulékos költségek (pl. a víz távoltartás) miatt.

Az elsősorban műtárgyépítésben alkalmazott mélyalapozási eljárások a magasépítési gyakorlatban kevésbé terjedtek el, a különféle technológiák, szerkezetek osztályozása esetleges, részletes tárgyalásukra a Geotechnika c. tantárgy keretében kerül sor.

Magasépítési szempontból - az alapvető működési elvek, építési megoldások és szerkesztési elvek ismerete mellett — a mélyalapok és a rájuk kerülő épület kapcsolata, a terheket közvető szerkezetek kialakítása lényeges kérdés.
Süllyesztett alapok

A kút- és szekrényalapok építésére szolgáló eljárás lényege, hogy a talajszínten (helyszíni előregyártással) elkészített, vagy üzemben előregyártott elemekből összeállított, a leendő alaptesteket határoló kutakat, illetve szekrényeket - folyamatos földkitermelés mellett - végleges helyükre süllyesztik. A kiemelt föld helyére általában soványbeton kitöltés kerül.

A kútalapozás sémája és erőjátéka a 4-8. ábrán látható.
A kútalapok “pontszerűen” háritják át a terheket. A közvetítő szerkezet gerendarács, vagy vasbeton lemez lehet.

Szerkezeti részletek, kialakítási változatok az S/9-9. ábralapon találhatók. A térszínen legyártott illetve gyűrűs szerkezetű előregyártott elemes kutak süllyesztését
– vágóéles kialakítás,
– vállkiképzés,
– súrlódáscsőkkentő anyagú (pl. gyöngykavics) kitöltés a köpenyfal körül,
– estenként önsúly feletti többlet (pót) terhelés

is segítheti. A kutakat kitöltő olcsóbb (kis cementdagolású) soványbeton teherhárító képességét a kutat lezárt csövé alakító szerkezeti beton fenék-, és féjdugók növelik. A fenékdugó domború kialakítása nagyobb teherátadási felületet biztosít.

A szekrényalapok általában a rájuk kerülő építmény (műtárgy) illetve épület alaprajzi kör (és szerkezeti) vonalait veszik át.
Süllyesztésük
– kerületmenti vágóélekkel, vagy
– úsztatás utáni vízbeeresztéssel (víz-, és hídépítés),
– szükség esetén (víz alatt, gázok jelenlétekor) légnyomásos (keszon) módszerekkel,

hajtható végre. A szekrényalapok alapvető szerkezettávolzatai és építésmódja az S/10-10. ábralap vázlatain található.

Cölöpalapok

Mélyebben fekvő (nagyságrend: 10 m) teherbíró talajok elérését a jól gépesíthető, az időjárástól csaknem függetlenül végezhető cölöpalapozási módszerek teszik lehetővé. Szerkezeti anyagak és készítésmodjuk szerint általában
– helyszínre szállított (előregyártott) fa-, acél-, vasbeton, és
– helyszínen készített (monolit) beton-, vagy vasbeton cölöpöket használnak.

Az előregyártott cölöpök lehajtási eljárásai lehetnek a
– verés,
"ha ez néhéz lenne, leánsnak kissé a homokban és a havicsban, aztán leverik a cölöpöket, ameddig a heges törgyfacölöpők el nem érik a jó tömör talajt, ezekre építenek."

- beléscső védelme mellett, vagy
- résiszap kiszorítással,
- kiemelt (pl. fűrással) föld helyére töltött adalékanyag utólagos kiinjektálásával állíthatjuk el.

A cölöpök a terheket szerkezetük és a talajviszonyok függvényében
- a cölöpcsúc környezetében nyomással, vagy/és
- palástfelületükön kőpenyőszürőldóssal adják át.

Az úgynevezett támaskodó cölöpök a terhek túlnyomó részét a csúcsnál, míg a lebegő cölöpök kőpenyőszürőldóssal közvetítik.

A cölöpök között vasbeton generáció, vagy lemezszerkezet teremt teherátadó kapcsolatot.

A cölöpalapozás erőjátéka és sémája a 4-9. ábrán, teherátadás módja és szerkezeti részletei az S/7-7., 8-8. ábralapokon található.

Résfal alapok

A 30...100 cm vastag résfalakat 12...40 m mélységig lehet alapozásra, munkagődő határolásra, megtámasztásra, vízzárást, földalatti műtárgyak építésére használják. Különösen, sűrűn beépített területeken (pl.: foghíjak pótlása) folyó munkák estén alkalmazható előnyösen. Az oldalirányú erők felvételét kihorgonyzás segítheti.

A résfalas szerkezetekről, építésükül készített tájékoztató vázlatakat az S/11-11. ábralapon vannak.

4.2.3. Ellenőrző kérdések, feladatok a 4.2 fejezet anyagához

1. Mi az alapozás feladata?
2. Ismertesse az alapozások követelményrendszert!
3. Milyen épületjellemzők hatnak az alapozási mód megválasztására?
4. Mi a talajviszonyok szerepe az alapozásban?
5. Készítsen kérdőívet alapozási mód kiválasztásának döntés-előkészítésére!
6. Értékelje az alapvető alapozási módokat!
7. Melyek a síkalapok alkalmazásának feltételei?
8. Ismertesse az alapsik megválasztásának szempontjait!
9. Mutassa be az alapsik váltások okait, és módjait!
10. Ismertesse különféle szerkezeti anyagú sávalapok teherátadási mechanizmusát! Rajzolja fel jellemző keresztmetszeteket!
11. Nevezze meg a sávalapozás lehetséges munkafolyamatait!
12. Mikor készítünk pontalapokat?
13. Sorolja fel a pontalapok anyagait és szerkezeti formáit!
14. Mely síkalapokat kell vasbetonból készíteni és miért?
15. Értékelje a gerenda-, gerendarács és lemezalapozásokat!
16. Mikor használunk mélyalapokat a magasépítésben?
17. Ismertesse a süllyesztett alapok szerkezetét, készítés módját!
18. Rajzoljon fel egy jellegzetes (függőleges) kútalapmetszetet!
19. Osztályozza a cölöpalapokat többféle szempont szerint!
20. Sorolja fel a mélyalapok és az épületek, épületszerkezetek kapcsolatát biztosító megoldásokat!
21. Milyen célokra használják a résfalakat?
22. Ismertesse a résfalak szerkezetét, építésmódját!

4.3 Víz elleni szigetelések

Az épületeket és szerkezeteiket érő hatások egy részét a víz különböző megjelenési formái okozzák. A hatások nedvesség útján, illetve nedvesség által érvényesülnek. A kármegelőzés és a védelem módszereinek kialakítása érdekében szükségünk van a nedvességokozók és hatásaik pontos feltérképezésére.

4.3.1. Az épületet támadó nedvességokozók és hatásaik

Az épület nedvességhatásoknak fokozott mértékben kitett részei, szerkezetei, elemei
– a terepszint alatt,
– a homlokzatokon, különösen a talajjal érintkező lábazati felszakaszokon,
– úgynevezett vizes-, és vizes technológiájú helyiségeiben,
– tetőkön, teraszokon, stb. fordulnak elő (4-12. ábra)
A legfontosabb nedvességkockozók a

- csapadékvíz
 (közvetlenül a szerkezetekre jutó, vagy felcsapódó, illetve a talajba leszívárgó víz, hó, jég, stb.)
- talajvíz
 (talajszemcsék közötti szabad víz),
- talajvízből felszívódó talajnedvesség
 (kapillárisan kötött),
- talajvízből felszabaduló talajpára,
- torlasztott víz (a talajvízzel azonos tulajdonságú vízzáró talajréteg fölött felgyúlt csapadékvíz),
- használati víz (a funkcionális használathoz, épületgépészeti rendszerekben a vizes helyiségekbe juttatott víz),
- az üzemű víz (ipari, laboratóriumi technológiákhoz szükséges, elfolyó - szennyezett - víz),
- a pára (funkcionális használat, vagy vizes technológia által keltett vízigőz, párás levegő).
(4-12. ábra)
A számbaveendő hatások:
- oldalnyomás és hidrosztatikus felhajtóerő (az úgynevezett szabadvizek, mint a talajvíz és a torlasztott víz hatása),
- nedvesítés (a kötött vizek és a le/kicsapódó pára hatása).

A nedvesítéshez kapcsolódó egyéb hatások:
- fagyas,
- térerzékenység, hőszigetelőképesség csökkenés,
- káros vagy anyagok juthatnak a vízzel a szerkezetbe,
- a nedves közeg biológiai károsítók életfeltételeit teremtheti meg.

4.3.2. A nedveség elleni védelem lehetőségei

Az épületek helyiségeinek és szerkezeteinek nedveség elleni védelmét különböző követelményszinten valósíthatjuk meg, a használati igények szerint.

A teljes szárazság követelményét az állandó emberi tartózkodásra szolgáló, nedveségre érzékeny anyagok tárolására épített helyiségek, laboratóriumok esetében kell kielégíteni, vízhatlan szigetéléssel.

A viszonylagos szárazság alacsonyabb igényszintjét vízzáró szigetelési megoldások is biztosíthatják, az átjutó nedveség mennyiségét korlátozva.(amennyi a másik oldalon elpárologni képes)

A nedveségokozók káros hatásai ellen alkalmazható módszerek:

- a víz távoltartása az épülettől
 - helyes telepítéssel,
 - tereprendezéssel, óvárokk rendszerrel, (4-13./a ábra),
 - épület körüli járdával, folyókával, (4-13./b ábra, és az S/14-1. ábrálap a-e részletrajzai)
 - a víz épületkörül összegyűlésének, feltorlódásának megakadályozása alagcsővezett szívárgórendszer, (4-13./c ábra) építésével, vagy felületszivárgók alkalmazásával,
 - a víz útját akadályozó szerkezetekkel (pl. résfalak) építése
 - a határoló épületszerkezet vízzáró anyagból való elkészítése (vízzáró tömegszigetelés, pl. különleges adalékú vízzáró beton)
- vízhatlan vagy vízzáró (szigetelő) rétegek beépítése a védendő szerkezetek víztámadta oldalain,
- utólagos szigetelési eljárások.
4.3.3. A vízszigetelések fajtáit

A továbbiakban a víz elleni védekezésnek vízhatlan-, vizzáró-, vagy utólag megvalósított szigetelési módszereit tárgyaljuk, elsősorban a talajban lévő szerkezetekkel kapcsolatban. A szigetelési mód a szigetelőanyag, a beépítési technológia, a rétegfelejtés, a vonalvezetés megválasztásának együttesét jelenti.

A figyelembeveendő legfontosabb szempontok:
- a talajviszonyok, elsősorban a talajfizikai jellemzők;
- a szigetelő rétege(ke)t mindig a megvédendő szerkezet nedvességokozó által támadott oldalán kell felületfolytonosan beépíteni;
- a szigetelés vonalvezetését (tulajdonképpen felületformáját) és szakaszoszlatását össze kell egyeztetni az épület alaprajzi és tőmegképzésével, tagoltságával és szerkezeti rendszerével, építésmódjával;

4-13. ábra
- a szigetelőanyagok statikai terhelhetősége behatárolt, nagyobb igénybevétel esetén a
 szigetelőképesség csökken, megszűnhet;
- a lemezekből készített szigeteléseket szilárd, sik határolószerkezetek (pl. aljzat- és
 védőbeton réteg) közé be kell szorítani;
- a szigetelőanyagok csak meghatározott hőmérsékletthatárok között tartják meg
 tulajdonságait;
- csak betartható és betartatható szigetelési technológiát szabad előírni;
- a fal-, és padlóréteg-rendszerekbe integrált szigetelés helye a szigetelési módtról általában
 független, a különféle anyagú szigetelések azonban - az anyagtulajdonságok, és a védettség
 mértékének függvényében - eltérő rétegszámúak is lehetnek (különböző aljzat és védőrétegekkel);
- az eltérő anyagú és beépítési technológiájú rétegek összehangolása és a technológiai
 fegyelem betartása elengedhetetlen követelmények - a helytelenül tervezett és/vagy
 kivitelezett szigetelés súlyos, gyakran helyrehozhatatlan és az eredeti szigetelési
 költségek sokszorosára rúgó károkat okozhat.

A vízszintes padlószigetelések rétegrendbe illesztési változatait mutatja be a 4-14. ábra,
 különböző nedvességkockozók esetén.

4-14- ábra
aljzatretegre kerülhet. Nedves technológiával készülő (pl. betonozott) aljzat és a hőszigetelő
réteg közé technológiai szigetelést (pl. műanyag fóliát) kell íktatni, hogy a hőszigetelés ne
nedvesedjen át és a kötési vizet ne szívja ki az aljzatból.

Vizes helyiségek padlóit a felülről támadó használati és/vagy üzemű víztől is védeni kell,
illetve a padlóra került vizet ügynevezett padlóösszefolyón keresztül el kell vezetni. Erre a
céla szolgál a lejtésben fettetett padlóburkolat és a szívárgó vizeket összegyűjtő
homokszegény szűrőbeton a használati-, illetve üzemű víz elleni szigetelés felett. A vizes
helyiségek szigetelését technőszerűen (a falra legalább 25 cm, illetve pl. zuhanyozókban
1,70...2,00 m magasan felvezetve) kell kialakítani!
A **vízszintes és függőleges falszigetelések** külön-külön készített és egymáshoz, illetve a vízszintes padlószigetelés(ek)hez vízhatlan módon kapcsolt felületekből állnak, vagy a padlószigetelés(ek)kel együtt készített **teknőszigetelés** részét képezik.

Vízszigetelő anyagok

- bitumenes alapanyagú mázak,
- műanyagkötésű mázak,
- bitumennel telített és/vagy bevont (papír, textil, üvegfátyol, műanyagszövet, stb.) lemezek,
- műanyaggal modifikált bitumenes lemezek,
- műanyag lemezek (polivinilklorid, poliizobutilén, műgumi, polietilén, stb.),
- fémlemezek (acél, ólom, vörösréz),
- cementhabarcs, (térhálósító-) műanyagadalékos cementhabarcs,
- vízzáró (úgynevezett tömeg-) beton.

Vízszigetelési technológiák

- ecsettel vagy kefével felhordott mázszigetelések,
- permetezett, szőrt mázszigetelések,
- kenéssel ragasztott lemezszigetelések (teljes felületen, sáv- vagy foltszerűen, egy- illetve kétfalú kenéssel),
- hegesztett (saját olvadékába ragasztott) lemezszigetelések,
- mechanikai rögzítésű lemez- és lepedőszigetelések (pontonként, sávosan, szegélyek mentén),
- leterheléssel (beszorítással) rögzített lepedőszigetelések, (a lepedőket lemezekből előregyártva készítik),
- rétegesen felhordott vakolat(habarcs)szigetelések.

A különböző technológiák vegyesen is alkalmazhatók.
A szigetelőrétegek szükséges száma a nedvesség okok és a felhasznált szigetelőanyagok függvényében:

- talajpára ellen:
 - kétrétegű bitumenmáz szigetelés, vagy
 - egyréttegű ragasztott bitumenes lemezszigetelés

- talajnedvesség ellen:
 - kétrétegű ragasztott bitumenes lemezszigetelés, vagy
 - egyréttegű hegeszthető (oxid, vagy modifikált) bitumenes vastaglemez szigetelés, vagy
 - egyréttegű műanyaglemez (vagy lepedő) szigetelés

- talajvíznyomás ellen:
 - négyrétegű ragasztott bitumenes lemezszigetelés, vagy
 - kétrétegű hegeszthető (oxid, vagy modifikált) bitumenes vastaglemez szigetelés, vagy
 - egyréttegű, fém-, vagy műanyaglemez szigetelés

Figyelem:
Az egyréttegű szigetelések fokozott kétoldali védelméről gondoskodni kell!

A legfontosabb szigetelési módok alapvető ismérvei a következők:

Bitumenes lemezszigetelések

- a szigetelőlemezeket úgyneveztél **kellősített** (tiszta, pormentes, száraz, sima, repedés/duzzadásmentes azaz térzogatálló legalább +5 C° hőmérsékletű) **aljzatra** és egymáshoz is **teljes felületü**kön **forró bitumenba** kell ragasztani!
- kent ragasztások esetén az aljzatra, a lemezréttegek mindkét oldalára és a felső réteg tetejére is fel kell hordani előírt vastagságban a kellő mennyiségű ragasztó/bevonó rétegeket!
- a többrétegű bitumenes lemezszigetelések vízhatlansága az úgyneveztet **labirintthatás**-nak köszönhető, amelyet a lemezek rétegenként eltolt, 8...10 cm-es átfedéssel kialakított hosszú-, és keresztirányú toldással biztosíthatunk;
- a szigetelt mezők szerkezeti okok, vagy építési sorrendbeillesztés miatt vonal mentén és utólag is csatlakoztathatók lapolt, ollós vagy ollós-lapolt átfedésekkel;
- a szigetelési síkok csatlakozási éléit, hajlatait, sarkait és zugait 5...8 cm sugárral le kell kerekíteni
- ferde síkú, szigetelt mezőket megszúszás ellen lépcsőzéssel, leterhelő beszorítással kell védni!
- az elkészül szigeteléseket minél előbb kb. 1 cm vastag homokterítésen betonozott védőréteggel, vagy védőfállal (ami lehet maga a határfal, lehet szigetelést védő fal vagy függőleges védőréteg) takarni kell! (adott esetben ideiglenes védőmeszelés, vakolás, takarás óvat az időjárás, és a további munkafolyamatok káros hatásaitól)

Talajviznyomás ellen készített négyrétegű bitumenes lemezszigetelés szerkezeti és lemezfektetési részleteit találjuk a 4-17. ábrán.

A szigetelési feladatokat az épület szerkezeti rendjébe illesztve, a munkafolyamatok szerves részeként kell kezelni!
4-16. ábra

Vázas szerkezeti rendszerű épületek alapozáshoz kapcsolódó szigetelési részleteit a 4-18. ábrán tanulmányozhatjuk. Az erőátadás és a szigetelés együttes igényét
- helyes alapozásmódi választással (pl.: lemezalapozás), vagy
- nagyteherbírású pillérszigeteléssel, (acéllemez, vagy vízzáró tömegbeton), vagy
- teknőszigeteléssel elégíthetjük ki.
4-17. ábra
Műanyaglemez szigetelések

A hőre lágyuló (termoplastikus) és kaucsk-elasztomer (műgumi) lemezek vízszigetelési alkalmazása már széles körben elterjedt hazánkban is.
Alkalmazásuk előnyös, mert
- többségük felületi ragasztást és beszorító erőt nem igényel,
- mechanikai tulajdonságaiak (különösen a szerkezetmozgásokkal összefüggőek) kedvezőek,
- általában egy rétegben készíthetők,
- a szigetelési munka termelékeny, kevésbé balesetveszélyes
- a helyszíni munka előregyártással (lepleités, hajlat, sarokidomok előkészítése, stb.) csökkenthető, hatékonyabbá tehető.

A műanyaglemez szigetelések hátrányai:
- magasabb anyagárak (a bitumenes lemezekhez képest pl.),
- terhelhetőségük időfüggő (fáradás),
- fizikai-, vegyi-, tulajdonságaiak némely esetben instabilak, (zsugorodás, lágyító vándorlás stb.),
- bontás utáni kezelésük, újrafelhasználásuk problematikus, nem minden esetben megoldott,
- sérülékenyek (simá aljzatot, védőrétegeket igényelnek).

A műanyaglemez szigeteléseket rendszerint szárazon, ragasztás nélkül fektetik, vagy pontonként ragasztva illetve vonal mentén mechanikai rögzítéssel függeszik. A lemezeket (lepelegységeket) átfedéssel (5 cm) vagy szalagtakarású bűtűs illesztésekkel vízhatlan módon (oldószeres, ün. hideg-, vagy forrólegvágós hegesztéssel, illetve öntapadó duzzadó betétszalagokkal) kapcsolják össze.
Az elkészült szigetelés védelméről ez esetben is gondoskodni kell!

A fémlemez szigeteléseket általában ipari létesítmények nagy mechanikai-, vegyi-, hő-, vagy egyéb (pl. sugár) hatásoknak kitett épületei, építményei és szerkezetek védelmére alkalmazzák.

A réteges mázszigetelések felhasználási területei a kisebb összefüggő felületek szigetelése mellett a szigetelési hibák javítása, szivárgások ideiglenes elhárítása.

Többrétegű habarcs(vakolat) szigetelések talajnedvesség ellen falakon 5...8 rétegben, vízszintesen 4..5 rétegben készül a szerkezetek nedvesség által támadott oldalán kifelé növekvő cementdagolási rétegekből.

A tömegszigetelés egy példája a 4-18. ábrán található, pillérszigetelés formájában.

A visszáró betondugó kellő tömörségét a
- a cement mennyiségek és minőségének megválasztása,
- a víz-cement tényező beállítása,
- különleges plasztifikáló, pórútőmítő, hidrofób (víztaszító) adalékszerek alkalmazása,
- a beton gondos bedolgozása, tömörítése, és utókezelése biztosítja.

Az utólagos szigetelési eljárásokat épület felújítási, javítási, rehabilitációs és rekonstrukciós munkák keretében végzik. A meglehetősen költséges, idő-, és munkaigényes vízhatlan és visszáró (vegyi tömítőszeres) falszigetelések mellett újabban a különféle fálszáritó eljárások és lélegző (pórusos) vakolatok használata is terjed. A nedvesség elleni védekezés mellett a módszerek alkalmazása is egyre gyakoribb.
4.3.4. Ellenőrző kérdések, feladatok a 4.3 fejezet anyagához

1. Mutassa be az épületek nedvességhatásoknak fokozottan kitett részeit, szerkezetet!
2. Melyek a legismertebb nedvességkockázók?
3. Sorolja fel a nedvességkockázók hatásait! Gyűjtsön példákat a károsításokra! (fotók, esetleírások)
4. Definiálja a szárazsági követelményeket! Kapcsoljon funkciók a követelményszintekhez!
5. Melyek a nedvesség elleni védelem lehetőségei? Vázoljon fel megoldásmódokat!
6. Milyen vízszigetelési fokozatokat ismer?
7. Melyek a szigetelési mód megválasztásának legfontosabb szempontjai?
8. Vázolja fel a vízszintes padlószigetelések elvi rétegfelelőpiti változatait!
9. Mit kell tudni a hőszigetelt padlók építéséről?
10. Hogyan szigeteljük a "vizes" helyiségeket?
11. Sorolja fel a vízszigetelő anyagokat! Gyűjtsön információkat a hazai anyagokról!
12. Milyen vízszigetelési technológiákat ismer? Készítsen egyről rajzos, vagy fotóbeszámolót!
13. Mitől függ a szigetelőrétegek száma, és mikor mennyit kell beépíteni?
14. Sorolja fel a legfontosabb szigetelésmódokat!
15. Értékelje összehasonlítással a bitumenes és a műanyagálemez szigeteléseket!

4.4 Teherhordó falak

A függőleges térelhatárolás, térelválasztás, térosztás feladata falak építésével oldható meg. A tömörfalas és vegyes szerkezeti rendszerű épületekben a falaknak alapvető teherhordó szerep is jut. A teherhordó falak saját súlyuk mellett a rájuk kerülő födémenek és tetők által átadott függőleges (önsúly és hasznos terhek) és vízszintes (szélnyomás és szívás, ferde erők vízszintes komponensei) erőket és nyomatékokat vesznek át, és továbbítanak az alapokra. A teherhordó falak függőleges tárcsaként működve résztvehetnek az épület merevítésében is. A felsorolt feladatokból következő alapvető követelmények:

A fal, mint tartószerkezet legyen
– szilárd,
– tartós, és
– tűzálló!

A fal, mint épületszerkezet lásson el
– hővédelmi,
– hangvédelmi,
– nedvességvédelmi feladatokat (a megkívánt igényesinten); legyen
– faragható, véshető, szegezhető (könnyen szerelvényezhető),
– jól vakolható (vagy burkolható illetve nyersen esztétikus felületű)!

A fal mint térralkotó elem tegye lehetővé
– az építési célak megfelelő homlokzati és
– belső felületek esztétikus kialakítását! (arányok, felületi struktúra, színek, hízagrajz stb.)

A falak építése legyen egyszerű és gazdaságos
– jól szerelhető, gépesíthető módon, és/vagy
– kevés helyszíni élömunkával.

Az üzemelő épületek falai legyenek
– egyszerűen és gazdaságosan fenntarthatók
– felújíthatók,
– átalakíthatók, szükség esetén
– bonthatók (a bontott anyag újrahasznosíthatóságával)

A falak a felhasznált szerkezeti anyagoktól, elemektől és az alkalmazott technológiáktól függően építhetők
– kézi (kis-, és növelt méretű falazó)elemekből falazva,
– zsaluzőélemes (falazott ún. zsalukövek, vagy szerelt zsalutáblák) zsaluüregeinek öntött (beton, ...) kitöltésével (ügyenevezett félmonolit építésmóddal),
– öntöttfalas (monolit) építési eljárásokkal (könnyübetonból, normál-, és vasbetonból, stb.),
– előregyártott (nagy-)elemekből, gépi mozgatást igénylő építési módszerekkel (blokkos és panelos építéssel)

A követelményrendszer feltételeit a falak
– az alapvető funkciókat összevonva, homogén-, vagy
– szétválasztott funkciójú, heterogén szerkezeti felépítéssel eligíthetik ki.

Homogén falak: terméskő-, téglafalazat; öntött könnyübeton fal,.....
Heterogén falak: előregyártott ún. szendvics-, vagy hőszigetelő betétes panelokból épített fal, stb.

A falak építésének munkafolyamatai nagyrészt
– az építés helyszínén, vagy/és
– előregyártó üzemekben zajlanak.

A helyszíni építés
– hagyományos, vagy fejlesztett falazási technológiákkal, vagy
– különféle (hagyományos, korszerűsített, félmonolit) öntöttfalas eljárásokkal végezhető.

A helyszíni építésű szerkezeteket átfogóan monolit falakként is szokták egyes szakirodalmi forrásokban értelmezni. A szűkebb értelmezés az öntött falakra vonatkozik.

Előregyártott elemekből
– helyszíni építéssel (pl. blokkok habarcshézagos illesztésével, vagy
– szereléssel (hegesztéssel ill. csavarkapcsolatokkal) készülnek falszerkezetek.

A falak illetve építőelemek
– természetes (pl. terméskő, agyag, stb.), és/vagy
– mesterséges (építési kerámia, vasbeton, stb.) építőanyagok felhasználásával készíthetők.

Vizsgáljuk meg teherhordó falak szerkezeti jellege és építési technológiája figyelembevételével az alábbi alapvető szerkezetcsoportokat:
– kézi falazóelemekből épített falak,
4.4.1. Kézi falazőelemekből épített falak

A kézi falazőelemek mérete és súlya egy-, vagy két kézzel elvégezhető mozgatást, beépítést tesz lehetővé. A növelt méretű elemek, az ügynevezett falazóblokkok manipulációjához kisegtő szerszámok használatára is tettek kísérleteket, de ezek a gyakorlatban nem terjedtek el.

A falazatokat az elemek szabályos rendjéből sorolt vízszintes rétegek ből készítik. Az egyes elemek között függőleges, ügynevezett állóhézagok, az egyes rétegek között vízszintes, fekvőhézagok vannak. Az egymásra kerülő rétegek állóhézagai nem eshetnek egy függőleges síkba, vagyis eltoltnak, "kötésben" kell az elemeket be építeni! A kötési szabályok anyagonként, elem fajtáként alakultak ki. A szabályos kötés érdekében, vagy a falvastagsággal megegyező szélességű vagy hosszúsági elemek felhasználása esetén (a falat teljesen átszelő) átmenő hézagok jöhetnek létre, amelyek épületfizikai szempontból kedvezőtlen mikrohőhidakat képeznek.

A teherbíró elemkapcsolatokat a hédagokat teljesen kitöltő falazóhabarcs biztosítja. A falazat szilárdságát a falazóelemek, a habarcs és a falazási munka minősége együttesen határozza meg. A szerkezeti anyagok (elemek, habarcsok) fajtái szilárdsági és egyéb anyagjellemzőit az Építőanyagok c. tantartály ismeretköre tartalmazza.

Természetes kövekből épített falak

A kő ősi építőanyag, de ma is - elsősorban a természetes lelőhelyek közelében - szívesen alkalmazzák, mert
- szilárd, és-tartós,
- nyers, vagy megmunkált felülete esztétikus.

A robbantással, vagy fejtéssel kitermelt kövek természetes, vagy további megmunkálással (darabolás, faragás, felületképzés) kialakított állapotban építhetők be. Az építőkövek kiválasztását az anyag tulajdonságait és falazattól elvárt követelmények igényszintje és a rendelkezésre álló megmunkálási-, mozgatási-, beépítési lehetőségei egybevetése segítheti. Például
- a kemény, erős kövek (pl. gránit) szilárdak, fagyállóak, de
 - súlyosak, nehezen megmunkálhatóak, jó hővezetők;
- a puhább, pórusos kövek könnyebbek, jól megmunkálhatók, de
 - gyorsan kopnak, nem fagyállóak; stb.

"nagysága és értéke szerint készül vagy rusztikusra, vagy lecsiszlótra"

A kőfalakat a kövek megmunkáltsága, alakítottsága (szabálytalan, síklapokkal határolt, sokszög alapú hasáb vagy ciklop-, téglatest) és falazatminősége (osztálya) szerinti kötési szabályok betartásával, általában habarcszállal készítik, de léteznek száraz illesztésekkel (rakott fal), összecisztolt elemek hézagnélküli, esetleg (bronz) kapcsolóelemes összeépítésével (őkori kultúrák), kialakított falak is, (a középkori várfaalkban pedig a hézagokba rakott, és ott megoltott égetett mészkövet találunk).
Kőfalazatok házagrajza, kötésmodja látható az S/16-2. ábralapon.

Az kötési szabályok betartása mellett a kőfalazatokban
− a köveket természetes fekvővüknek, rétegződésüknek megfelelően kell beépíteni (a terhelés a rétegekre merőleges legyen);
− a kötés mértéke (az egymás feletti rétegekben eltolt állóhézagok legkisebb távolsága) 10 cm legyen;
− a sarkokon, falvégeken nagyobb (esetleg többréteg-magasságú) köveket, vastagabb falakba helyenként falszélességű, úgynevezett beköth köveket kell elhelyezni;
− kerülni kell a kisebb, "kieső" ékalakú kövek használatát, a falfelületek mentén;
− a hégazogok kitöltöttségét, a kövek beágyazottságát biztosíthatjuk, nehezebb köveknél a habarcskinyomódást (pl. táv tartó betétekkel, alátétekkel) meg kell akadályozni;
− szabálytalan és ciklopelemek csatlakozásánál pontjainál legfeljebb három hégaz találkozhat;
− nem réteges falazás esetén is 1,0...1,5 m-enként közel vízszintes kiegyenlítő rétegeket kell építeni!

Tömör égetett agyagtéglar falazatok

Napon szárazott-, (később égetett-), kézzel formázott agyagtéglákat már az ókori Mezopotámiaiban is használtak.

A jó teherbiránságú tömör égetett agyagtéglar többféle méretváltozatban terjedt el. A klasszikus téglakötési módszer kialakulásával létrejöttek a téglák méreteinek kötött arányai is. A ma is használatos kisméretű (12x25x6,5 cm) téglák mellett bontásból előkerülnek a nagyméretű, - gyakran a téglakészű pecsétjével ellátott - téglák (14x29x6,5 cm) is. Az élméretek, a hégazogok figyelembevételével, az S/15-1. ábralapon vázolt és felírt szabályokat elégtük ki.

A klasszikus téglakötés szabályai:
− a falazati rétegek a falszakkal párhuzamosan futó helyzetü és arra merőleges kötő helyzetü téglából rakott sorokból állnak;
− a homlokzati (vagy egyik kitüntetett) oldalán futósorral bíró, futórétegek és az ugyanott kötősorral falazott kötőrétegek követik, váltják egymást a faalatban;
− a kötés előírt mértéke legalább 1/4 téglá, (fél téglá vastag falakban 1/2 téglá);
− a kötés kialakításához elemdarabolás (1/4, 1/2, 3/4, esetleg hosszában felezett úgynevezett fejelő téglara faragása) szükséges;
− az téglák közötti fekvőhézagok 1...1,3 cm, az állóhézagok (fugák) 1 cm vastagok;
− a falszakaszokat, faltheteket a téglá, a szabályos darabtéglák és az előírt hégaméretek figyelembevételével kell megtervezni.

Az S/15-1. ábralapon néhány alapvető téglakötési megoldás található. Figyeljük meg a
− a futó és kötőrétegek kialakítási és váltásmódjait a különböző vastagságú falakban,
− az átmenő hégazog szerepét,
− a falvégek "lekötésének" és kialakításának lehetőségeit,
− falvég-, és a sarkok kötésének összefüggéseit, stb.!
Üreges, növelt méretű, kerámia falazóelemes falak

A falazóelemek méretmérő és kőnnyítése a
− hozzáférhető és általános használhatóságú falazási feladatok,
− hőszigetelő képesség javítása

A feladat megoldásának egyik útja üreges szerkezetű kevéssé, majd soklyukú téglák, falazóblokkok kifejezéséhez vezetett. A gyártástechnológia fejlődése később lehetővé tette vékonyfalú (4...8 mm), nagy üregterfogatú ügynevezett vázkerámia termékek előállítását is.

A másik lehetőség a kerámia alapanyag porozitásának, (lyukacsosságának) növelése. Az agyagba kevert adalék (füríszpor, poliztirol gyöngy) kiégetve biztosítja a kivánt anyagstruktúrát.

A függőleges vagy vízszintes üregek a könnyítésen túl a beállt légszakok hatásával is javítják a hőszigetelés tulajdonságokat, a különböző méretű, tervszerűen kialakított üregrendszer pedig a hanggátlást is fokozhatja.

Az üregekbe építéskor kiegészítő hőszigetelő betéteket is lehet helyezni.

A nagy üregterfogat és/vagy porozitánsú elemek teherbírási tulajdonságai korlátozottak, ezért pl. vázkerámia elemes falak teherhordó szerkezetként csak három épületszintig használhatók!

A nagyobb nedvszívó kőpességű elemekből talajban lévő, talajjal érintkező, egyéb nedvességhatásoknak kitett falazatok nem készíthetők!

A növelt méret általában felszínlességet átfogó elemeket, igy átmenő hőzgakot igényel. A kitöltve is mikrohőhidak, kitöltetlenül "szellőző" légrések lezárására, hőhid megszakításra a csatlakozó felületek különféle hornylációs légszakos, habarcsdugós kialakításokat, tagolt elemképzéseket (L, T, Z, stb.) fejlesztettek ki.

A növelt méret, és a korlátozott darabolhatóság (csak előre tervezett, hornyokkal gyengített helyeken), megköveteli a faltestek és az egész épület moduláris tervezését. A kötéseken, falidomok kialakításához az alapelemek mellett kiegészítők is kellenek, így elemcsaládok alakultak ki.

Vízszintes üregelésű elemcsalád felhasználásával készített falazat részletei láthatók alaprajzban és izometriában az S/21-7., 22-8. ábralapon. Figyeljük meg a
− a vízszintes üregek elzárás módját a falvégeken, külső fáskókon
− az átmenő hőzgak megszakításának módszereit, stb.

A hazai gyakorlatban elterjedt, növelt méretű, üreges, kerámia falazóelemek, elemcsaládok:
− kevéslyukú, magasított és kettősmeretű téglá,
− soklyukú kettősmeretű (ikersejt) téglá,
− B (25, 29.) 30 kézi falazóblokkok,
− "ALFA" vázkerámia falazóelem család,
Beton

Az elemek szerkezeti, méretkoordinációs tulajdonságait a Magasépítő speciális stúdium Épületszerkezetek c. tantárgy, a falazás, építés további ismereteit pedig az Építési technológiák c. tantárgy anyaga tartalmazza.

Beton és könnyübeton elemes falazatok

A normál kavicsbeton viszonylag olcsó, könnyen és egyszerűen előállítható építőanyag. Falazóelemként jó szilárdsági, tartóssági tulajdonságai, tömöréssége miatt használható. A betonolelemek ugyanakkor nehezek, a belőlük készült falazat rossz hőszigetelő.

Az úregek általában függőlegesek, átmenőek, de gyártás-, és építéstechnológiai okokból kónuszos kiképzésűek (kizsuzhatóság), vagy felül zártak (habarcsterítés) is lehetnek. Könnyübetonokat

− porózus adalékanyagok(pl. duzzasztott agyagkavics), és/vagy porózus cementgél felhasználásával,

− egyszemcsés szerkezettel (egyforma szemcsék, ragasztó-, a hézagot kitölteni nem képes gél),

− sejtesítéssel (sejt-, vagy gázbeton) állíthatunk elő.

Ismerjük fel

− a hőszigetelő betétsav folyamatosságát nyújtó megoldásokat,

− a kötésmod lényegét, és

− a szerkezeti együttlöglobózás biztosítékait!

A hazai termékek közül megemlítjük még a "HABISOL" üreges, hőszigetelő könnyübeton kitöltésű elemeit, amelyek épületre kifejlesztett elemcsalád (pince falazó-, és zsalukő elemmel, stb.) részét képezik.

Sejtbeton anyagú termékek az erőművi pernyőből készített gázbeton "Borsod" és "Mátra" nagyproozítású könnyű, ám kis nyírós zsilárdságú falazóblokkok, amelyek kiváltása "HEBEL", majd "YTONG" márkanévű, kvarchomok alapanyagú sejtszilákkat elemekkel történt. Az elemek síklapú hasáb-, és ügynevezett "nétféderes" (cshiphornyos) változatban is készülnek.
Az elemek szerkezeti, méretkoordinációs tulajdonságait a Magasépítő speciális stúdium Épületszerkezetek c. tantárgy, a falazás, építés további ismereteit pedig az Építési technológiák c. tantárgy anyaga tartalmazza.

Vegyes falak

A vegyes anyagokból falazott, vagy öntött beton hátfalú szerkezetekben a drágább, de tartósabb, esztétikusan különböző rétegeket olcsóbb anyagú hátfalakkal társítják.

Az egyes rétegek szerkezeti együttdolgozatát elengedhetetlen követelmény, ezért
- réteges falazatokat úgynevezett csorábázatos bekötéssel kell összeépíteni,
- utólagos, burkolatjellegű szerkezeteknél a hátfalazat ülepedési idejét célszerű kiválni,
- nagyméretű (pl. kő)-elemek beépítésekor a hátfalazat és az elemek közötti hégak
 kitöltségéről (kiöntő dudák, injektlálás) gondoskodni kell!

Öntött hátfalazatok betonozás közben fellépő ideiglenes oldalnyomását például a falazat rítított, zsaluzás-szerű megtámasztásával fel kell venni!

A vegyes falak
- kőből és téglából,
- kőből és betonból,
- téglából (lehetőleg tőmör, fagyálló) és betonból
 készülhetnek.

A tömőfalas épületek lábazati falai, pincefalak lábazati szakaszai gyakran vegyes falak
 formájában készülnek. (4-25. ábra)

4.4.2. Zsaluzóelemes, félmonolit falak

A félmonolit építéstechnológia olyan, falazó-zsaluzóelemekből készített falazatot igényel, amely
- biztosítja (és a beton szilárdulásáig megtartja) a szerkezet alakját, és méreteit,
 (tulajdonképpen "benmaradó" zsaluzatot képez)
- jól kiönthető, szükség esetén többirányban vasalható zsaluüreg-rendszert tartalmaz,
- épületszerkezeti funkciókat (hőszigetelés, hangelnyelés, vakolattartás stb.) lát el.

A követelményrendszer feltételeinek könnynő, jól hőszigetelő képességű, de mégis kellően
 szilárd anyagokból készített elemek képesek megfelelni, mint például
 - a laza, szálas szerkezetű, cement-, vagy műgyanta kötésű, növényi rost-adalékos
 ugynévezett "biobeton" termékek,
 - a zártecellás (pl. extrudált polisztirol) műanyag habelemek.

Nagy méret pontosságú - általában könnyen darabolható, alakítható - elemekből, habarcs
 nélkül, száraz illesztésekkel is készíthető ilyen falszerkezet.

A fal teherbírási tulajdonságait a betonminőség és a vasalás mértéke szabályozza.

Cementkötésű, szárazillesztésű fabeton elemcsalád alapelemei, kötési részleti láthatók az
S/27-1., 28-2. ábralaponak láthatók.
Állapítsuk meg
– a kialakítható, vasalható zsaluüregrendszer tulajdonságait,
– az alaprajzi, és magassági tervezéshez használható modulhálózat(ok) jellemzőit!

Az S/29-3.,30-4. ábralapokon extrudált, kemény poliszirol hab-bennmaradó zsaluzatú felmonolit falt szerkezet elemei, részletei vannak.

Tájuk fel
– a bonyolult formaképzés okait, és lehetőségét,
– a hátrányos tulajdonságokat!

Bennmaradó, speciális alakú, és anyagú hőszigetelő táblák felhasználásával dermesztett beton szerkezetek, falak építhetők.

Az extrudált, kemény poliszirol hab-, perlíbeton-, gipszperlit anyagú, szembefordítva összekapcsolt lapok köztől, olyan "mikroméretű" váz-, illetve lemezrendszer alakul ki amely még vasalható (vékony hegeszthető acélbetétek befúzésével, hegeszttelt hálók és létrak felhasználásával). Az anyagában nedvsszívó, vagy beépített gipszpolgácsákkal nedvsszívóvá tett zsaluüregfalak a beöntött folyós konzisztenciájú cementhabarcsból annyi vizet vesznek el ami a gyors kötést, dermedést elősegíti, ugyanakkor a nedvesség tárolásával az utókezelést is biztosíthatják.

Dermesztett betonból vékonyfalú, dobozszerűen, vagy lamellákkal merevített szerkezetek építhetők. Bemutatásukat érdekes, műszaki tartalmuk, egyszerű, házilag is kivitelezhető készítmódjuk indokolja. (S/33-1.,34-2.,35-3.,36-4. ábralapok)

Hazai zsaluzóelemek:

– "Bizol" cementkötésű, rizshéj vagy faaprilát adalékos elem,
– "Durisol" cementkötésű fabeton elem,
– "Isorast" extrudált, kemény poliszirol hab-elem,
– "Soform" gipszperlit zsalulap (dermesztett betonhoz), stb.

Az elemek szerkezeti, méretkoordinációs tulajdonságait a Magasépítő speciális stúdium Épületszerkezetek c. tantárgy, a falazás, építés további ismereteit pedig az Építési technológiák c. tantárgy anyaga tartalmazza.

4.4.3. Öntött (monolit) falak

"A kitöltött falat, amelyet egyébként zsaluzott falnak is neveznek, ... az antikok ... előállított deszkákkal ... teret képeztek ki, ... megtöltve ezt a habarcs és tetszőleges fajtájú kövek keverékével ..."

A monolit építési eljárások lényege, hogy a friss állapotban alakítható, képlékeny, vagy öntethető szerkezeti anyagot helyszínen készített, összeállított öntőformába (zsaluzatba) dolgozzák be, és tömörítik. Kötés, és utókezelés (nedvesen tartás), esetleg érléles (kötés- illetve szilárdulás gyorsítás) után, a kellően teherbiró szerkezet kizsaluzható.

A tartószerkezeti követelményekhez rugalmasan igazodni képes, monolit módon egybeépíthető, együttadagoló falt szerkezeteket a – tömörfalas szerkezeti rendszerű épületek főfalaiként,
– vázas épületek merevítésére,
– pince-, és lábazati falként, stb. széles körben alkalmazzák, de
– támfalak, tartályok, üstök, gyárkémények, tornyok is építhetők öntöttfalas építési eljárásokkal.

A monolit építés sem új találmány. A népi építészetben kézzel emelhető zsaluformák között, döngött vályogfalakat készítettek. A vulkáni eredetű ásványok (trasz, puccolán) kötőerejét már a rómaiak is felismerték. Öntött falak agyagbetonból és mészalakból is építhetők. A mai gyakorlatban szerkezeti anyagként normál kavicsbeton, különféle könnyübetonok, és vasbeton használatos.

Az öntöttfalas építés ideiglenes (csak az építés időszakában használt) építési segédszerkezetek (zsaluhatok, állványzatok), és az építési feladat nagyságrendjétől függően, emelő-, és egyéb munkagépek alkalmazását igényli.

A zsaluhatokkal szemben támasztott követelmények:
– a tervezett szerkezet méretének, alakjának megadása és megtartása a betonozás munkafolyamatainak idejére, a beton kellő szilárdulásáig,
– az állékonyság biztosítása és fenntartása a betonozás munkafolyamatainak idejére, a beton kellő szilárdulásáig, (zsaluhatot meg-, és alátámasztó állványokkal)
– a technológiaiakag helyes betonozhatóság feltételeinek megteremtése, (betonozó-, tisztító nyílások, zsebek, stb.)
– a pontos, szabályozható méretállítási, tümelelési (az elkészült, terhelt szerkezet lehajlását kiegénylő) lehetőségek biztosítása,
– az egyszerű és roncsoismentes kízsaluzhatóság (a minél többszöri felhasználhatóság érdekében).

A követelményrendszer feltételeit a zsaluhatok funkcionális szerkezetései elégítték ki:
– a visszanyerhető (esetleg bennmaradó) zsalubéjak,
– a merevitő hevederek, bordák (bordarácsok), tartók,
– a távtartó-fesztő szerkezetek,
– az ala-, és megtámasztó állványok,
– zsalu-, ill. állványmellő-leeresztő szerkezetek,
– a sikbaállító elemek (pl. ferde támasz).
– szerelő-, és betonozó munkaszintek, stb.

Monolit falakat építhetünk
– helyszínen készített (hagyományos), egyedi-,
– kis-, álló-, fekvő-, vagy/és nagytáblás-,
– alagút (tér)zsaluhatokkal, és/vagy
– csúszószaluzással,
– bennmaradószaluzatos (pl. kőpenybeton) eljárásokkal.
A 4-19. ábrán egy táblás falzsaluzat sematikus metszete és a falak, födémek szintenkönt egymást követő építésére szolgáló, úgynevezett küszöbsaluzási eljárás vázlatos sorrendterve látható.

Ismerjük fel és azonosítsuk a funkcionális szerkezetéseket!
Az öntöttfalias építés a helyszíni munka hatékony felhasználását biztosító módszerekkel
- a hagyományos falazatoknál vékonyabb, és szintenként azonos falvastagsággal, alaprajzi
 elrendezéssel bíró többszintes magasházak, épületmények építését,
- viszonylag egyszerű, de magas szinten gépesíthető építőipar technológiája alkalmazását,
- kisebb létszámú, alacsonyabb képzettségű (betanított munkások, műszakonként egy-egy
 vezető szerelővel) munaerő foglalkoztatását,
- hulladék, vagy bontott anyagok (téglatörmelék, salak könnyűbetonadalékként való) felhasználását, teszi lehetővé, ugyanakkor:
- a kedvezőtlen időjárás nehezítí, lassítja az építést,
- az építési tíralakítást, térosztást szerkezeti kötöttségekorlátozzák (azonos szerkezeti
 alaprajz, zsaluelem méretrend)
- a technikai háttér(segédszerkezetek, gépek, anyagellátás) költséges és szervezésigényes.

Táblázat zsalueleszek

A zsaluhéjakat a zsaluzóacsok is általában hevederezt szalzatlából állítják össze
hagyományos zsaluelem munkák során.

A zsalutz táblázatai kézenfekvő móddja a zsalamitából előregyártása. A modulált
méretrendbe illeszthető, kézzel mozgatható kistáblák régebbi, (cshhornyos, gyalult,
impregnált, acélcsinekkel hevederezett deszka-, "DOKA" táblák)tipusai mellett újabban
könnyűfémkeretes, műfa-zsaluhéjas (pl. "FRAMAX") merevített táblavátozatokat is
használnak.
A táblaméret egyikének helyiségmérétre növelése modulált osztású álló-, és fekvőtábláz
zsaluzatok készítését teszi lehetővé.

A teljes fél egy-, illetve - az emelőgéppel való biztonságos mozgatás korlátai miatt - néhány
nagytáblával is zsalueható. A nagytáblákat általában
- fém (acél, ritkábban alumínium) sik-, trapéz-, hullám-, terpesztett lemez zsaluejak,

4-19. ábra
felhegesztett, csavarozott, melegen hengerelt, vagy hidegen alakított (pl. "U", "C", kalap, stb.) szelvényekkel, esetleg a lemez anyagából hajlított szegély-, és közbenső bordákkal merevítik, vagy

- a rétegelt, préselt, impregnált tartós "múfa" zsaluhéjakból,
- könnyúacél, övlemezes, és/vagy rácos merevítő tartókra, vagy
- korszerű ragasztott gerinclemezes, vagy rácos fatartókra szegezve, csavarozva készítik,
- összefeszítésüket/távtartásukat speciális, gyorsan oldható-, és feszíthető, és visszanyerhető elemekkel (pl.: magas menetemelkedésű, csöves csavar, pillangóanyával) oldják meg,
- helyzetbeállításukhoz, kizsaluzáshoz állítócsavarokat, csavarorsó talpakat használják.

Készózsaluzási eljárások esetén a fődémen gyorsítása
- könnyű zsaluzaattartók, és alátámasztó dúcok használatával,
- táblás rendszerű asztal-, vagy fiókzsaluzatokkal lehetséges.
Modulált, acél nagytáblás zsaluzat összeállításának távlati rajza látható a 4-20. ábrán.

A hazai gyakorlatban alkalmazott, - táblás falzsaluzássokkal is foglalkozó - ismertebb zsaluelemszereket:
- "ÉTI-N" - terpesztett fémhálós,
- "DOKA" - műfatáblás, fatartós,
- "HÜNNEBECK" - műfatáblás, könnyű fémartók,
- "NOE" - fém, vagy műfatáblás, fémartók,
- "PERI" - vegyes anyagú,
- "SCAN-FORM" - merevített acéllemez táblás,
- "BATIMETÁL-FÉMMUNKÁS" - acéltáblás,
- "MEVA" - fémkeretes táblák, stb. ...

A zsaluelemek szerkezeti, méretkoordinációs tulajdonságait, a szerkezettervezési kötöttségeket a Magasépítő speciális stúdió Épületszerkezetek c. tantárgy, a zsaluzás, építés további ismereteit pedig az Építési technológiák, és az Építési segédszerkezetek c. tantárgy anyaga tartalmazza.
Alagút (tér-) zsaluzatos építés

A síklapokból csuklóasan, vagy mereven összekapcsolt, fordított "U", vagy "L" alakú térelemekkel általában többszintes tömör-, harántfalas szerkezeti rendszerű épületek szerkezeti falai és födémi zsaluzhatók egyidejűleg (szintenként). (Az épület szerkezetváza hossz tengelyére merőlegesen fekvő "alagút"-akból tevődik össze.)

Az alagútzsaluzatok merevített acéllemez táblákból, a térbeli merevséget és a működtetés biztosító acél rudazatokból állnak.
A térzsaluzatok mozgatása, emelése vezércépként telepített futómácskás (esetleg billenőgénes) torony, vagy készödarukkal lehetséges. Pontos helyzetbeállításhoz
– a kitűzött falak helyén alacsony (15..20 cm) boka-, vagy csonkafalakat, falcsonkokat építenek,
– teleszkopikusan, szétfeszíthető/ összehúzható rudakat (rudazatokat), szintbeállító csavarokat használnak.
A falzsalúsok távtartása/ összefeszítése a táblás zsaluzás módszereivel történik.

A kizsaluzás nehézségeit a falakkal egyidejűleg bebetonozott födém okozza, mert
– a zsaluhéj-leválasztáshoz a térelemeket
 – össze kell húzni, vagy
 – födémszakaszuk íves lehajtása mellett, falszakaszaikat be kell dönteni,
– a leeresztett térelemekeket a födémszélig ki kell húzni, hogy
 – a következő szintre kidugó-kizsaluzóállvíányról kötelhimbával, vagy
 – közvetlenül a födémszelől úgynevezett "kacsacsőrű" himbával a következő szintre lehessen azokat emelni,
 – a födémszakaszt tálaló, celszerű kizsaluzáskor ideiglenesen alátámasztani, mert ezzel növelhető a zsaluforgatás sebessége.

A két darabban kizsaluzható rendszerek esetén a méretválaszték
– különböző méretű "L" félalagútelelemek párosítása nyomán, míg az egyben kizsaluzható rendszerekben
 – modulált táblákból szerelhető födémszakaszokkal, vagy/és
 – állítható fesztávolságú távtartó gerendák alkalmazásával alakul ki

Az alagútzsaluzaütő felületek vakolást nem igényelnek, az alagútvegek lezárására különféle térelhatároló falak építése szolgál. A szélső határoló beton, vagy vasbeton vég-, vagy büttőfalakat hőszigetelni kell !

Az alagútzsalus építés elve, és a zsaluáthelyezés egyik módja a 4-21. ábrán látható.

Állapítsuk meg
– a kizsaluzás alkalmazható módját,
a zsaluáthelyezéshez használható gépet, segédeszköz!

A hazai építési gyakorlat az alábbi, külföldről átvett, illetve saját fejlesztésű rendszereket alkalmazza:
- "OUTINORD" - francia eredetű, két darabban kizsaluható elemek
- "BATIMETAL" - francia, hajlókony födém zsalu-héjas rendszer
- "PEVA" - magyar fejlesztés (Pelle József, Varga István), központi összehúzófeszítővázas

rendszer, stb. ...

A zsalužéleke, rendszerek szerkezeti, méretkoordinációs tulajdonságait, a szerkezettervezési kötöttségeket a Magasépítő speciális stúdium Épületszerkezetek c. tantárgy, a zsaluzás, építés további ismereteit pedig az Építési technológiák, és az Építési segédszerkezetek c. tantárgy anyaga tartalmazza.

Csűszózsalužatos építés

Elsősorban ipari épületek (tornyok, gyárkémények, tartályok), de középmagas és magas lakóépületek falszerkezetei is épülhetnek csűszózsalužással. A lehetőleg zárt alaprajzú épületek, építmények falait egyidejűleg, folyamatos betonozzással, a zsalužat lassú (kb. 5... 15 cm/ora) egyenletes emelésére mellett készítkik.

A csűszózsalužatok funkcionális szerkezetéhez
- a falak alaprajzát követő, erősen merevített, 1,0 ... 1,20 m magas zsalužó kötény(-párra)
- az alaprajzi adottságoktól függően kiosztva (1,5...2,0 m-enként) a kötényre felszerelt acéljárásos függőesztő/ emelőkeretek
- a jármokon (keretfejéken) átvetetett, a falangelyben álló támrudak
- a támrudakra szerelt, összehangoltan (szinkronban) működtethető emelőgépek, (kettős
- tokmányú, visszasúszás-gátolt, araszlomozgást végző berendezések)
- az emelőgépeket mechanikus áttétellel működtető emelőorsók, elektromotorok, illetve a
- hidraulikus-, vagy pneumatikus erőátadás közégeit előállító berendezések, (olajszajtó,
- légkompresszor)
- az emelést ("csűszást") szabályozó vezérlő berendezések.
- szerelő-, betonozó munkaszintek és ellenőrzésre, javításra, felületképzésre használható
- függőállások.

A nagyszáladoságú acél támrudakat a zsalužattal együtt emelt hézagahúzó csövek használatával ki lehet váltani (a már szilárduló betonra támasztva), végül vissza lehet nyerni.

A 4-22. ábrán egy pneumatikus működtetésű, csűszózsalužat keresztmetszete és az
- emelőegységek alaprajzi kiosztása, merevített összekapcsolása látható.

Csűszózsalužzással már 1924-ben építettek silót, Németországban, de a kardántengelyes
- áttételi és a sűrített levegővel működtetett változat Thoma József szabadalma, az egyidejűleg,
- folyamatosan változtatható vastagságú és ferdeséges falak zsalužására szolgáló "SVETHO"
- rendszer svéd-magyar találmánya.

Fődeme, lépcsők csak utólag, a falakban kialakított (kiahugott) nyílásokba kapcsolva
- építhetők meg.
4.4.4. Előregyártott falak

Az előregyártott falak elemeinek mozgatásához, beemeléséhez emelőgép (telepített torony-, kűsző-, vagy szabad pályás autódaru) kell. Az elemeket szabad gyártótéren (úgynevezett poligonon), vagy előregyártó üzemekben (egykor házgyárakban) állítják elő. Szállításuk speciális járműveket, és az építéssel, szereléssel összehangolt ütemezést, szervezet igényel. A teljesfokú (zártrendszerű) előregyártás adott időszakok tömeges (pl. lakás) építési igényeinek korlátzott színpontú kielégítésére hivatott, de nyílt-, rugalmas építési rendszerekben alkalmazva az optimális mértékű előregyártás szerepe mindig jelentős.
Az alábbiakban két olyan építésmóddal foglalkozunk, amelyek már hagyományosnak, bizonyos értelemben túlhaladottnak mondhatók, ugyanakkor a hazai épület- (elsősorban lakás-)állomány jelentős része ezen eljárások valamelyikének alkalmazásával valósult meg. Ennek az "üzemelő" épületállománynak a fenntartása, javítása, felújítása, esetleg rehabilitálása, rekonstrukciója, szanálása, majd bontása komoly építő-, (magasépítő) szakmai kapacitásokat igényel.

Blokkos építés

A blokkos épületek falait fél-, vagy egész emelet magasságú, modulált szélességű elemekből építik. Felső tömeghatáruk szerint
- kisblokkok (kb. 4 kN/db),
- közép- (kb. 8 kN/db), és
- nagyblokkok (kb. 16 kN/db) léteznek.

Készülhetnek
- üreges kerámia elemekből előrefalazva,
- különféle könnyübetonokból öntőformában (sablon) gyártva.

A blokkok, blokkos épületek tervezési metódusa a modulkoordináció alkalmazásának klasszikus példája.

A kötésben, vagy hálósan egymásra rakott blokkok kapcsolatát vízszintes habarcshézagok és függőleges habarcsgugók biztosítják.

A blokkfalak a födémekhez monolit vasbeton koszorúval csatlakoznak.

A blokkfalak építése (csakúgy mint a többi előregyártott, valamint a tér-, és csúszószaluzású falak készítése) az építésmód által megkívánt pontosságú munka feltételeinek, biztosítása érdekében - általában úgynevezett fogadószíntről indítható.

A fálsíkokat vezérelemek közötti vezetősének, és függözőség segítségével állítják be. A magassági szinteket műszeresen, vagy csöves vízmértékkel ellenőrzik.

A blokkok emeléséhez, mozgatásához a súlyponti tengelyükre merőlegesen kihagyott lyukon keresztüldugott, úgynevezett "köldökesas", vagy szorítópofás himbát hasznának.

A cementhabarcsgába helyezett elemeket ideiglenes (ún. sapkás), a födémelelemek beemelő kampóihoz kapcsolt csőtámazsokkal rögzítik. A magassági, és függőleges síkú finombeállításhoz keményfa ékeket (ékpárokat), és a teleszkopikusán működtethető támazsokat használják. A végleges beállítás után a kikent függőleges hégak közötti horonyban habarcsgugókat alakítanak ki.

Az S/37-1. ábralapon egy blokkos épület alaprajzi és metszetrésztele, valamint könnyübeton középblokok részleti találhatók.
Készítsünk tervezési modulhálózatokat!
Jelöljük ki a vezérelemekeket!

Az S/38-2. ábralap üreges kerámiaelemekből előrefalazott elemek részleteit, beépítését ismerteti.
Rajzoljuk meg a blokkok homlokzati osztását!
Nevezzük meg a használható emelési segédeszközt!

A blokkos építésmód előregyártott elemekből szerelhető (vasbeton, könnyűbeton) födémekeket és (vasbeton) lépcsőszerkezeteket használ.

Az építésmód szerkezeti, méretkoordinációs tulajdonságait, a szerkezettervezési kötöttségeket a Magasépítő speciális stúdium Épületszerkezetek c. tantárgy, a építés további ismereteit pedig az Építési technológiák c. tantárgy anyaga tartalmazza.

Panelos építés

A telepített üzemekben kialakított gyártási körülmények és az alkalmazott eljárások, valamint az építéshelyi szereléstechnológia technikai feltételrendszere teszi lehetővé nagyméretű előregyártott fal (fődém, lépcső, stb. ...) elemek használatát.

A falpanelok a tömörfalas szerkezeti rendszerű épületeket panelos építésmóddal megvalósító építési rendszer elemei. Vázas és öntöttfalas épületek térelhatároló-, (pl. alagútvégek lezárása, homlokzati falak), kiegészítő-, (pl. végfali hőszigetelt burkoló-, vagy köpenyelemek) szerkezeti is megvalósíthatók falpanelok beépítésével.

A panelok nagyságrendjük, beépítési helyzetük szerint
- homlokzati, vagy belső teherhordó nagypanelok (a tömörfalas rendszer szintmagasságú, helyiség (szerkezeti cella) szélességű elemei), (lásd az S/41-5. ábralapon)
- a tartófalakra, vázozslopokra függötten, vagy/és fődémzélre, homlokzati vázgerendákra támasztott fekvőpanelok (mellvéd-, másnéven parapet, és attika/felső lezáró/ panelok S/45-9.), és állópanelok lehetnek.

Ebben a fejezetben a tömörfalas építési rendszer falait, falszerkezeti kapcsolatait tárgyaljuk.

A merevnek tekinthető síklapokból (fal-, és födémpanelok) a "dobozelv" alkalmazásával alakul ki a panelház szerkezeti rendje. Az alapelemekeket éleik mentén, mintegy összfűző (vízszintes és függőleges) monolit vázsakaszok a panelokból túlnyújtott, helyszíni fűző-, és kapcsolőelemekkel összekapcsoolt (hegyszélet, csavarozott) acéletalékok körülbetonozásával készülnek. A vázsakaszok zsalüregeit határoló panelszélke erősen tagozott kialakítása az élek mentén átadó nyírófeszültségek felvételére szolgál.
(lásd az S/43-7.,44-8.ábralapot)

A teherhordó sikelemek mellett a rendszer részét képezik
- a válaszfalpanelok (6 cm vastag, hálós vasalású vasbetonelemek),
- a térelemek (üzemben öntött, vagy összeszerelt vb. dobozok)
 - vizes helyiségek (fűrdő, WC) részére lárt,
 - aknák (felvonó, gépszet) számára, és
 - loggiáknak nyitott formában
- lépcsőelemek, stb. ...
A panelos építésű falak fontosabb jellemzői:
- a elemek tartó-, és épületszerkezeti funkciójú rétegeit, szerkezeteszeit telepített üzemekben készíti illetve előre beépíti, így
- a homlozkati elemek hőszigetelését,
- a kívül végleges-, belül vakolatmentes felületképzést ,
- a felületkezelő, üvegezett nyílászárókat
- az elektromos vezetékek védőcsövezését, stb. ...
- a helyszíni munka szerelő jellegűvé, termelékenyebbek válík, kisebb építési
nedvességbevitelével jár,
- a vasalt teherhordó rétegű falak összetett igénybevételeket (hajlitás, síkban kató terhek) is fel tud venni, így a cellás elrendezés az épület többirányú merevségét is biztosítja,
- a nagyobb teherbírázó elemek és a szerkezeti rend, a hagyományos falazott szerkezeteknél fajlagosan kisebb épületműveget eredményez,
- a hálós elrendezésű homlozkati panelok csatlakozási hézagait az eddigiektől eltérő módon kell kialakítani!

A panelszerelés vezérgépe a legnagyobb elemsúlytól, az épületmérétektől függően kiválasztott, általában kötöttpályás, forgógémes emelődaru.

A szerelési ütemterv szerint helyszínore szállított (vagy kis mennyiségben ott tárolt), elemeket
- a blokkos építéshez hasonló (abból fejlesztett), úgynevezt szabadpályás módszerrel, vagy
- a gyártási adottságokat (méret pontosság, beépíthető betétek használata) kihasználva kötöttpályás szereléssel építik össze. A kötött-, vagy kényszerpályás szerelést a falelemekbe alul és felül beépített, két-két, egy függőlegesből eső vezető/szintező
csavarkészlet-pár teszi lehetővé. A felül kiálló csavarszárak mintegy "megvezetik" a rákerülő panelt, az alján lévő perselyekkel. A szintbeállítást a felső csavarokon - műszeres szintellenőrzés nyomán - megfelelő magasságra állított csavaranyákkal végzik. Az első
szintet a fogadószintbe épített csavarszárrakkal, vagy "szabadpályásan" szerelik. (lásd az
S/41-5.,42-6. ábralapokat)

A szerelést
- a "dobozelvet" követve zárt cellák sorolásával, vagy
- körülpéttéssel végzik. A zárt szerelés biztonságosabb, kevesebb szerelési segédeszköz
igényű, a körülpéttés pontosabb.

A csavarokra állított panelokat két-két, a födémpanelok emelőfülehez csuklóan kapcsolt teleszkopikus ferde támaszal állítják függőleges síkba és támásztják meg ideiglenesen. A támászkok húzó-nyomóerők felvételére, gyors-,(áttolószeg, szorítóanya) és finom
ellenmenetes csavar) beállításra alkalmassnak kell lenni.

Az ideiglenes megfogásokat a vázszakaszok száraz szerelése (hegesztés, csavarozás) után
szabad csak oldani. A következő szintet csak a födémpépités és a monolit vázszakaszok
betonozása, kellő mértékű szilárduálisa után szabad szerelni!

A szintezőb beállító csavarokra állított falak, egyenletes felfekvését, teherátadását a koszorú-
vázszakasz és a panel közötti hézag földnedves cementhabarcok kitölése, "aláverése”
biztosítja.
A dekompresszióval egészlevegő

A homlokzati panelházak elosztó és fő feladatuk a hőszigetelés, a természetes légkondicionálás és a hirtelen hőütközéseket megelőzése. A homlokzati panelházak úgy terveztek, hogy a belső és külső pammélyek közötti választálás fontos, a technikai követelményekre, a feladatokra és a gazdasági hatékonyságra vonatkozó feltételekre figyelmen kívül hagynak.

A homlokzati panelházak műszaki megfontolása

- A panelházak külső és belső műbőrből állnak.
- A külső panelból álló falak azonban különböző helyekre épülhetnek, például kohóhasalakból, perlitbelő vagy működőSzendvicspanelből.
- A belső panelhez megfelelő légkörgátott (polisztirol, poliuretan) táblák használhatóak.

A homlokzati panelházak hasznosítása

- A panelházak különböző működő nyomtatókban, például kohóhasalakban, perlitbelő és szendvicspanelből használhatók.

A panelházak kialakítása

- A homlokzati panelházak kialakítása során fontos a megfelelő technológiának használata.

A panelházak felhasználása

- A panelházak használata során fontos a megfelelő technológiának használata.

A panelházak teljesítménye

- A panelházak teljesítménye során fontos a megfelelő technológiának használata.

A panelházak ellátása

- A panelházak ellátása során fontos a megfelelő technológiának használata.

A panelházak biztonsága

- A panelházak biztonsága során fontos a megfelelő technológiának használata.

A panelházak alkalmazása

- A panelházak alkalmazása során fontos a megfelelő technológiának használata.

A panelházak életkor

- A panelházak életkor során fontos a megfelelő technológiának használata.
védett, légzár-ként működő impregnált (pl. bitumennel átitatott) rugalmas műanyag habszívacs tömítősáv választa el.

A vízszintes panelhédagokat
- zártan vagy
- úgy nevezzük vízkészöbbel képezhetjük.

Zárt hédaképzés esetén a függőleges és vízszintes hédák összefüggő hálózatát kell kialakítani, különös tekintettel a kereszteződések vízhatlan kapcsolatára.

A függőleges nyílthédák hátsó légzőzáró zóna a vízszintes szakaszokon is körbefut, folyamatos hálózatot képez. Az esőzár és a dekompresziós csatorna a vízszintes hédák megzakad. A felső panel külső kérge kötőnyszerűen elég, vízkészöbőt képezve a torlónyomás által a hédákba juttatott csapadék előtt. (A vízkészöb szükséges nagysága meteorológiai és légkörí mérési adatok alapján egzakt módon számíthatók)

Nyílthédák kereszteződésénél a függőleges hédákban lecsurgó víz a homlokzati sík elé vízvetőkkel ki kell vezetni.

A nyílt hédaképzés egyik módját tanulmányozhatjuk az S/40-4. ábralapon.
Azonosítsuk a funkcionális zónákat!
Nevezzük meg feladataikat!

4.4.5. Pincefalak

A nagyrészt, vagy teljesen térszín alatt épített pincefalakra a felmenő szerkezetek által átadott terheken kívül további vízszintes és ferde erők is hatnak, így
- a földnyomás, (mélységtől, talajviszonyoktól, térszintehetől függő mértékben, de mindig)
- a talajvíznyomás, (a mértékkal talajvízszint változásait követő mértékben)
- a boltvállnyomás (boltosztott pincefődének, boltövek esetén, főleg régi épületekben)

További időszakos terhelést jelenthet
- az épülektőzeli nehézjármű forgalom,
- a saját és közeli építési terhelés (pl. daruk),
- tehertárolás és mozgatás, amelyek statikus térszintek és dinamikus hatások formájában adódnak át a pincefalakra (is).

Az összetett igénybevételek miatt jelentősen eltér a különböző szerkezeti rendszerű épületek pincefalainak kialakítása, mert
- más és más a letterhelés mértéke, ami segíti az oldalirányú erők felvételét,
- a térszín alatt terek természetes megvilágítása, szellőzése különböző szerkezeti adottságokhoz igazítható.

A talajnedvesség, gyakran talajvíz jelenléte és a pincek belső tereinek szokásosan várható páratérhelése miatt szigetelt változatban sem tanácsos a pincefalakat üreges, porózus, nedvészivő anyagokból készíteni.

Tömörfalas épületek pincefalai

A hagyományos, falazott szerkezetű épületek pincefalait
- kisméretű tömörgélből falazva,
– betonból (vasbetonból) zsaluzatba csömöszölve, vagy
– vegyes falként (pl. téglafal burkolat/zsaluzattal) építik.

A kellő mértékben leterhelt, szükség esetén vastagabb pincefal alkalmas az oldalnyomások felvételére, talajvíz jelenléte esetén is.

Talajnedvesség esetén csak földnyomás, magas talajvízszintnél talajvíznyomás is hat. A két hatás összegződik (superponálódik)!
Mindkét változatra elvi megoldást nyújt a 4-23. ábra (a, b)

4-23. ábra

Öntött-, és előregyártott elemes épületek pince nélkül, vagy a monolit dobozszerkezetű fogadószint részleges, vagy teljes földbesüllyesztésével alápincézve épülnek.
A tömörfalas épületek nem minden határfala főfal, ezért leterhelő szerepét meg kell vizsgálni! (pl. harántfalas épületek télélhatároló hosszalhái, stb.)

Átalakítás, rekonstrukció, bontás esetén a leterhelés elővigyázatlan megszűntetése tragikus eredményű lehet!

A pincetér megvilágítására tömörfalas épületekben, a pincefalak kelk együtt teknőszerűen körbeszigetelhető (angol)akna szolgál, amelyet mellvéddel, korláttal, vagy vízszintes rácossal kell ellátni a balesetek megelőzése érdekében. Az angolakna vízelvezetését összefolyóval, lefolyócsővel kell megoldani!

Bevilágító-, csúszdás ledobóaknák üvegebeton, illetve nyitható fedelekkel készíthetők.(4-23./c, d ábrák)

A bevilágító-, szellőző-, ledobó aknák fűmből, műanyagból előregyártott, rácossal ellátott, a pincefalra szerelhető és egyszerűen körülbetonozható változatai is vannak.

Vázas épületek pincefalai

A vázas épületek pincefalai felett a függőleges terheket a vázgerendák áthárítják a vázpillérekre, ezért kellő leterhelés hitján az oldalirányú erőket más módszerekkel kell felvenni. A 4-24. ábra vázlatai szerint a pincefalakat
- támfal szerűen kialakítva (a.),
- váz- (és pót)pillérek közé, mintegy vízszintes síkban működő ellenboltövként kialakítva (b.),
óvhatjuk meg az oldalnyomások káros hatásaitól.

A bevilágítás szerkezeti lehetőségét
- a váztól függetlenített, oldalnyomásra méretezett pincefalakkal lehet kihasználni.(c.)

A vázas épületek pincefalai a vázelemeket is terhelhetik! (b. eset).

Alapozásuk megegyezhet a pillérváz gerenda-, vagy gerendarácsalapjával, ám lehet önálló (külön süllyedő) sávalap is.

Pilléralapozás esetén a pincefalat a pontalapokra kerülő gerendaalap is hordhatja, ezért alatta laza homokos kavics feltöltésű sávot kell képezi esetleg vágóéllel kell ellátni, tudniillik
- a nagyobb terhelésű pontalapok erősebben süllyednek mint a kisebb terhelésű gerenda, amely ezért "fennakadhatna" a talajon.

Vázas épületek pincefalai is tömör téglá, monolit beton és vasbeton anyagú szerkezetek.
4.4.6. Lábazati falak

Az épületek terepszint mentén elhelyezkedő részei az időjárási és mechanikai hatásoknak fokozott mértékben kitett szerkezetek. A faltövekben összegyűlő, leszivárgó nedvesség, a csapóeső és a terepről, járdáról visszacsapódó, a járművek által felvert víz, fokozott nedvesítést, a fagyhatás által roncsolást, a bevitt vagy/és kiolto sokkal korroziót okoz. A lábazati falak szerkezete ennek megfelelően általában eltér a rákerülő, úgynevezett felmenő falakétől.

Lábazati falsozaszt általában a járda (terep)szint és a földszinti padlóvonal(szint) közötti 30...90 cm-es sávban, esetleg a padlószintet meghaladó magasságig építünk.
A lábazat formálásának, vonalvezetésének, anyaga megjelenésének, felületének esztétikai, homlokzatalakító szerepe van, fontos építészeti eszköz. Lehetőleg körben azonos kiképzésű, vízszintes lezárású, vagy a terepvonalat lépcsőzve követő legyen! Külső síkja a homlokzatéval megegyező, attól kissé hátrahúzott, vagy kiugratott lehet. Mindegyik megoldás szerkezeti és építészeti előnyöket és hátrányokat is hordoz. Például az előálló lábazat jól hangsúlyozza a homlokzat tagolását, de a kiűlő felületen, zugban lerakódik a szennyeződés, megáll a hó stb., ezért célszerű (legalább 45°-os) ferde síkkal lezárnia a fagykárok, a korrozió megelőzése érdekében.

A lábazati falak szerkezeti felépítésük szerint lehetnek:
- **homogének**, vagy
- **heterogének**, vegyes építéssel, vagy burkolva. A lábazati falakat, heterogén falak homlokzati kérget, burkolatát csak mechanikai hatásoknak ellenálló, fagyálló anyagokból szabad építeni. (üreges, porózus elemek, téglák, beltéri burkolóanyagok nem használhatók, lábazati falként, lábazatburkolatként).

Heterogén szerkezetek hátfalazatait is, a pincefalakhoz hasonlóan ajánlatos tömör teglából, köből, vagy betonból készíteni!

Készítésmodjukat tekintve a lábazat lehet:
- **monolit**, (nyers, vagy "látszóbeton" fal, beton vagy műkö kéreg),
- **kiselemekből** falazott, (terméskő-, fagyálló téglal vagy beton hátfallal együtt, vagy köpenyfalként falazva),
- kiselemekből, lapokból burkolva készített (klinkertéglal burkolat),
- **lemezesszintes lezés** (kő-, előregyártott műkö táblák).

A 4-25. ábrán a lábazati fal helyét, homlokzati síkhoz való viszonyát és néhány készítésmodú szerkezetváltozatát mutatjuk be.

Vegyük észre, hogy
- a szigetelés vonalvezetése a lábazat típusától függ, mert
 - a monolit homogén fagyálló lábazatok esetén a vízszintes falszigetelés a **lábazati fal fölé**, a padlószigetelés vonalába kerülhet,
 - a nem fagyálló hátfalazatokat vízszintes és függőleges falszigetelésekkel **védeni kell,**
 - a lemezess burkolatok hédágon a visszacsapódó víz bejuthat, ezért a szigetelést a lemezek mögé (a járdásik fölé 25...30 cm-rel) **fel kell vezetni,** ugyanakkor
 - a hátfalazathoz teljes felületén szerkezetileg kapcsolódó kérégek, burkolatok, köpenyfakalak mögé **nem szabad** a szigetelést felvezetni!
4.4.7 Ellenőrző kérdések, feladatok a 4.4 fejezet anyagához

1. Melyek a teherhordó falakkal szemben támasztott alapvető követelmények?
2. Osztályozza a falakat szerkezeti jellegük és építési technológiájuk szerint! Állítsan fel szerkezetcsoportokat!
3. Ismertesse a legfontosabb falazási szabályokat!
4.Írja le egy kőfal építésének folyamatát az anyagnyeréstől kezdve!
5. Mitől függ a kőfalom homlokzati megjelenése? Gyűjtsön példákat (fotó, rajz)!
6. Mutassa be példákon a klasszikus téglakötési szabályokat!
7. Elemezze a könnyű, növelt méretű kerámia falazóelemek és a belőlük építhető falak tulajdonságait! Kutasson fel hazai (esetleg külföldi) termékeket (katalóguslap, beépítési útmutatók)
8. Melyek a szilikádbázisú falazóelemek készítésének lehetőségei? Kutasson fel hazai (esetleg külföldi) termékeket (katalóguslap, beépítési útmutatók)
9. Milyen vegyes falsoberkezetek ismer? Miért és mikor építünk vegyes falakat?
10. Értékelje összehasonlítással a különféle kiselemes falazatokat!
11. Mi a félmonolit építési szempont, lényegét?
12. Nevezz meg falsoberkezeteket, elemcsaládokat!
13. Ismertesse a dermesztett betonszerkezetek előállításának fő jellemzőit, lényegét!
14. Írja le a monolit falak építési sorrendjét, segédszerkezetet, gépigényét!
15. Állítsa fel a szaluzatok követelményrendszerét, határozza meg funkciós szerkezeteszekeit!
16. Értékelje az öntött falas építési módonak!
17. Osztályozza a táblázat szaluzatokat többféle szempont szerint! Kutasson fel hazai (esetleg) külföldi típusokat (katalóguslap, beépítési útmutatók)
18. Jellemezze a térzsalus építést!
19. Hogyan szaluzhatók ki az "alagutak"?
20. Sorolja fel a csúszószaluzatok funkcionális szerkezet részeit!
21. Értékelje összehasonlítással a korszerű öntött falsoberkezeteket!
22. Ismertesse az előregyártott falak jellemzőit!
23. Mutassa be a blokkos építésű falak elemeit!
24. Allapitsa meg egy blokkfal építési sorrendjét, induló feltételeit és segédeszközönségén!
25. Értékelje összehasonlítással a blokkos és a panelos építési módonak!
26. Ismertesse a panelos építésmódnak, tömörfalú épületek szerkezeti rendjét!
27. Melyek a panelos építés legfontosabb jellemzői?
28. Nevezz meg a falpanelok szerkezeti anyagait, és szerkezetváltozatait!
29. Fogalmazz meg a panelfalak szereléstechnológiajának lényegét!
30. Vázolja fel a panelok homlokzati hézagképzésének lehetőségeit!
31. Milyen hatások, és körülmények okozzák a pincefalak konstrukciós nehézségeit?
32. Vázolja fel egy tömörfalas épület pincefali metszetét talajnedvesség, illetve talajvíz jelenléte esetén!
33. Ismertesse a pincé természetes megváltozásának, szellőzésének megoldási lehetőségeit!
34. Mutassa be a vázás épületek pincefalainak konstrukciós lehetőségeit!
35. Tegyen ajánlásokat pincefalak anyagaira, rétegfelepítésére és készítésmódjára!
36. Osztályozza a lábázati falakat szerkezeti felépítés és készítésmód szerint!
37. Elemezze a szigetelés és a lábázati falak viszonyát! Vázolja fel az alapeseteket!
38. Oldja meg különböző földszinti padlómagasságok mellett, a 4-23. ábra lábázati szerkezeteinek pincefali csomópontjait!

4.5 Koszorúk és kiváltók

A teherhordó falak az épület szerkezeti rendjébe illesztve, annak szerves részeként kapcsolódnak egymáshoz és más funkcionális szerkezetekhez. A vízszintes, vagy ferde teherhordó szerkezetek (fődémeik, lépcsők, tetőszerkezetek) és a falak csatlakozó élei mentén teherátdásra alkalmas, és az alapvető épületszerkezeti funkciókat sem zavaró kapcsolati megoldásra van szükség. Az alapvetően függőleges terhek hordására szolgáló, és alkalmaz falakat, vízszintes erőhatások, kihajlás ellen helyenként (cél szerűen szintenként a födémsíknak), össze kell fogni!
A falak téralakító (elhatároló, osztó, kapcsoló) szerepe miatt a teherhordó falakban is szükség van különböző rendeltetésű kisebb- nagyobb nyilások kialakítására. A nyilásokat át kell hidálni, vagyis a terheket a nyilások melletti, közötti szakaszokra átháritva, azokat ki kell váltani!
Fenti feladatokra szolgálnak a falak teherhordó szerkezeteszeiként működő koszorúk és kiváltók (nyílásáthidalók).

4.5.1 Koszorúk

A téglafalú, fafödémes épületekben a vasbeton széleskörű építőipari felhasználásának elterjedéséig a falak vízszintes síkú összefogására, és a fagerendák bekötésére laposacél (kovácsolt, később hengerelt) falkötővasakat használtak, amelyek sarkokon, "T" alakú falcatlakozásoknál, a felfekvő gerendavégeknél a falazat állóházagaiba kerültek. A lehorgonyzást, rögzítést biztosító áttolóvasak - gyakran művészi, kovácsolt formában - a homlokzatokon is megjelenhettek.(4-24. ábra)

A vasbeton koszorú nevének megfelelően körbefogja az épületet a födémem magasságában. A külső és a belső teherhordó falakban is kell koszorúkat építeni!

A koszorúk szerkezeti anyaga a vasbeton, összetett igénybevételek jelenlétére utal. Ezek az igénybevételek
- a vízszintes erők, vagy ferde erők vízszintes komponéneken (pl. tetőterhek) oldalnyomásából,
- a befogott (vagy részlegesen befogott) födémerendéák által átadott nyomatékból,
- az erköly-, párkány-, stb.- konzolok csavarásából,
- és természetesen- függőleges (fal-, és födémt)terhekből származnak.

Az igénybevételek felvétele mellett a koszorúk feladata
- a pontszerű terhek (például födémerenda) egyenletes szétosztása nagyobb falszakaszokon,
- az egyenlőtlen süllyedés hatásainak kiegyenlítése,
- a hajlítónyomatékok (pl. nyilások felett) és csavaró-igénybevételek elosztása hosszabb falszakaszokra,
- a födémfal kapcsolat biztosítása (monolitikusan, vagy a gerendák befogásával, bekötésével).

A koszorúk magasságát a kapcsolódó födéms (vagy más szerkezet) típusa és építésmódja határozza meg. Például egyes előregyártott vasbetonelemes födémem gerendáit a koszorúvasak közé be kell fogni, ezért a koszorú a gerendamagasságnál alul-felül 3...5 cm-rel nagyobb. A magasságot (különösen csökkentett szélességű koszorúk esetén) célszerű a falelemek magassági méretrendjéhez igazítni. Például kismértű téglafalak esetén a magasság:
\[nx(6,5+1)cm = 3/4M\] lehet

A koszorúkat kiváltóval- (magas "szemöldökű", a födémhez közel áthidaltnyilások felett), és/vagy párkány(konzollemezzél) egyesíve is készíthetünk.

A koszorúk minimális vasalása a sarkokban vezetett 4 db 8..10 mm átmérőjű hosszvasbetétből és 40 cm-enként elhelyezett kengyelekből (\[\mathcal{O} \, 5,5..6\, mm\]) áll. A legalább 10 cm széles csökkentett méretű koszorúkba csak 2 db fővas építhető be úgynevezett "S" kengyelekkel.

Tartószerkezeti szempontból leginkább megfelelő, teljes méretű koszorúkat főleg közbenső főfalakban alkalmazhatjuk, mert
- a határolófalban, jó hővezető anyagú lévén, **hőhidakat képeznek**;
- a homlokzaton **rosszul vakolható**, gyenge vakolat-tartású sávokat alkotnak.

A homlokzati koszorúk hőszigetelését (hőhid megszakítás)
- hőszigetelő (általában elég szilárd és vakolható, pl. fagyapot, gázbeton) zsaluzőelemekkel,
- zsaluzatba helyezett hőszigetelőlemezekkel (pl. műanyag habok),
- hőszigetelő köpenyfallal,
- köpenyfal mögé helyezett hőszigeteléssel,
- a teljes homlokzat hőszigetelő burkolásával oldhatjuk meg.

A zsaluzatba helyezett vékony cserépburkolat pusztán a könnyebb vakolhatóságot biztosítja de **nem hőszigetel** és nem előzi meg a vakolatelszünetiödéseket, kifagyásokat.

Egyes hő-szigetelő anyagok alkalmazása esetén a vakolhatóság, jobb vakolattartás érdekében erősítő betéthálókat (pl. rabic-, poliészter) kell alkalmazni !

A 4-26. ábrán a vasbeton koszorú beépítésének átnézeti vázlata, és jellegzetes keresztmetszeti változatai találhatók.

Hagyományos falazott, és könnyűbeton öntöttfalak koszorúszerkezeti csomópontjai vannak a 4-27. ábrán.
4.5.2. Kiváltók

Falnyílásokat térkapcsolási, közlekedési, világítási, szellőzési és technológiai okok miatt kell a falakban kihagyni, kialakítani.
A nyílások áthidalására, kiváltására szolgáló szerkezetek (a falak szerkezetrészei) alakjuk (tengelyvonaluk formája) szerint
- ívesek, és
- (általában vízszintes) egyenes tengelyűek lehetnek.

A különféle boltív- (körszegmens, felkör, ellipszis, kosárgörbe, csúcsív, szamárhátv stb. ...) tengelyű szerkezeteket boltöveknek nevezzük.
A boltövekben a terhelés, a boltívktól kissé eltérő teherátadási vonal mentén, a kereszmetszetekben nyomófeszültségeket ébresztve fut le a boltvállakig, és adódik át a falra.
A teheráthírítás másik fajta szerkezeti az egyenes tengelyű hajlított-nyírt (általában kettámaszú tartóként működő) kiváltó-, nyilásáthidaló gerendák.
A kiváltók szerkezeti anyagait igénybevételük határozza meg.

Míg a nyomott boltöveket
- kőből, tömör égetett téglából építhetjük, addig

a gerendajellegű áthidalók, kiváltók az összetett igénybevételnek megfelelően
- (fából), acélból, de elsősorban vasbetonból készülnek.

A római kor óta ismert boltöveket hagyományos építési módszerekkel készítik. Építésükhöz alátámasztó állványzatra szerelt mintaív(ek)re, mintadeszkázatra van szükség. A terhelt falszakaszokat is tömör, szilárd falazőelemekből kell építeni, a boltövcsatlako-zásoknál a teherátadási vonalra merőleges felületű boltvállakkal. A boltöv "hajtását"(a pillérickötési szabályoknak megfelelő falazását) kétoldalról, szimmetrikusan váltakozó szakaszokban (vagy ketten) végzik. Középen a boltöv "zárását", befesztítését ékalakú zárókő, vagy faragott tégla ék(pár) elhelyezésével, "kiekeléssel" végzik. (4-28. ábra)

Fából ma már csak ideiglenes épületekben tömör falaiban készítünk kiváltókat. (Vázas faházakban a kiváltók önálló szerepe nem értelmezhető- a váz részét képezik.)

Melegen hengerelt "I", „U" szelvényű acélgerendákat, teherbírásukhoz képest kis súlyuk, könnyen változtatható méretük miatt fenntartási építéseknél, épület átalakításoknál utólagos nyilás kiváltásra használják.

A vasbeton kiváltó gerendákat helyszínen, előregyártva, vagy félmonolit módon készítik.

Az előregyártott, beépítés után azonnal terhelhető vasbeton kíváltók alkalmazása kötött méretválasztékok, viszonylag nagy súlyuk és nehézkessé vált hőszigetelhetőségük, vakolhatóságuk ellenére széleskörben elterjedt. A homlokzati falakban igényelt hőszigetelés üzemi beépítése (integrálása), illetve a vasbeton előnyös tulajdonságait megtartó, de hátrányait kiküszöbölö felmonolit, (pl. vázkerámia) zsaluelemeles kíváltók kifejlesztése épületszerkezeti szempontból is kifogástalan megoldásokat eredményezett. A zsaluelemeles szerkezetek a "járatos" méretrendtől eltérő hosszúságokban helyszíni előregyártással is előállíthatók.

A hagyományos lágyvasbetétes szerkezetek mellett nagyszilárdságú betonból (pl. kerámia-papucs zsaluelemeles) feszített beton kíváltókat is találunk a hazai építési piacon. A karcsú előfeszített tartókat építés közben ideiglenes alátámasztással, túlemeléssel kell beépíteni. Végleges teherbírásukat a megsziláradt tömör, téglából falazott, vagy öntött beton nyomott övvel együtt nyerik el, végleges, vízszintes alakjukat pedig a terhelés hatására veszik fel!
Monolit vasbeton kiváltók koszorúval egyesített változatait találjuk a 4-28. ábrán. A felvázolt megoldások nyílászáró szerkezetek beépítését segítő kávás, és vasbeton kötőnyel ellátott megoldásait adják.

A kiváltók terheinek meghatározásakor figyelembe vehetjük az úgynevezett "áboltozati" hatást, másként kifejezve, a falak természete átburkolózódását.(tudniílik a parabola alakú görbe feletti falszakasz már önfordó)
A 4-29. ábrán gerendajellegű kiváltók beépítési részletei találhatók.

Figyeljük meg
– az acélgerendák együtt dolgoz(ta)tásának és korroszió illetve tűz elleni védelmének megoldását,
– a biztonságos (támaszerő)átadáshoz szükséges felfekvési felületek nagyságát,
– a vázkerámia zsaluzóelemek zsaluüregképzési és vasalási változatait!
4.5.3. Ellenőrző kérdések, feladatok a 4.5 fejezet anyagához

1. Mi falak funkcionális szerkezetrészeinek feladata?
2. Mire használták a falkötő vasakat?
3. Ismertesse a koszorú feladatait!
4. Vázolja fel a jellegzetes koszorúkeresztmetszetet! Vegyen fel méreteket különféle fal-, és födémserkezetekhez kapcsolódó koszorúk esetén!
5. Milyen a koszorúk minimális vasalása?
6. Hogyan kell a homlokzati falak koszorúit kialakítani?
7. Milyen összefüggések vannak a kiváltók alakja, anyaga és erőátadásmódja között?
8. Fogalmazza meg a boltövek építésének szabályait!
9. Értékelje összehasonlítással a kölönböző anyagú kiváltógeren-dákat!

4-29. ábra
4.6 Kémények és szellőzők

Az épületek fűtéséhez, gravitációs szellőztetéséhez függőleges csatornák, kürtők építésére van szükség. A kürtőket célszerűen a falakból "kihagya", vagy önállóan, (esetleg a faltesthez kapcsolva), körülfaazlaヴァ episik, építtették.

Előregyártott elemekből (hőszigetelt, hátszellőzött) önálló kémények építhetők.

A gravitációs, kürtős szellőzők helyét a gépi szellőző (klima) berendezések szerelt fém (alumínium, rozsdamentes acél, ...) csatornarendszerei veszik át, ugyanakkor a tömörfalas szerkezeti rendszerű, hagyományos falazott építési technológiával készült épületekben célszerű, és gazdaságos falazott szerkezettálózataik alkalmazása napjainkban is.

4.6.1 Kémények

A kémények, kéménykürtők a tüzelőberendezések biztonságos működtetésének feltételeit teremtik meg azáltal, hogy
- friss levegő (oxigén) folyamatos utánpótlásával biztosítják az égés feltételeit, miközben
- a keletkező füstgázokat elvezetik.
- Mindkét feladat ellátását az az áramlási kör biztosítja amely az eltérő hőmérsékletű gázok fajsúlykülönbségén alapul. A gravitációs áramlás kialakulását a huzathatás teszi lehetővé, amely a kürtő magasságától, keresztmetszetének geometriai jellemzőitől, és belső felületének súrlódási ellenállásától függ. A szükséges huzat mértéke a tüzelőberendezések fűtőteljesítményétől (fütőfelületétől függ, így tehát a kémények legfontosabb műszaki paraméterei is ez határozza meg. A kéményeket épületfizikai és épületgépészeti jellemzők, összefüggések alapján méretezni kell.

A kémények lehetnek:
- falazott, (hagyományos vagy orosz) kémények,
- nagy falvastagságú központi-fűtés kémények,
- előregyártott elemekből készíttet, (épített, vagy szerelt) kémények,
- úgynevezett gyűjtőkémények, és
- gyárkémények
Falazott (orosz)kémények

Falazott, vagy másnéven orosz kéményeket hagyományos falak kürtőiként, vagy önálló faltestként építhetjük. A téglafalakban kialakítható kürtő keresztmetszeti alakját, méretét és a kötési lehetőségek határozzák meg.

A huzathatás szempontjából ideálisnak tekinthető kör keresztmetszetű kialakítás csupán beléscso beépítésével lenne megoldható, ezért a falazott kémények kürtői négyzet, vagy téglaalap keresztmetszetűek.

A kürtő-keresztmetszet oldaléleinek aránya - az áramlási feltételek biztosítása, a tűl nagy vezetéség megelőzése érdekében - legfeljebb 1:1,5 lehet. A kéménykürtőt körül mindenhol legalább 1/2 téglá vastag fal vegye körül. A kürtőfalba idegen szerkezet, (fődémgerenda, kiváltó, stb., ...), nem "lóghat", nem épülhet bele!

Az orosz kéményeket mindig tömör égettet (általában kismértű) téglából építik. Az alkalmazható kürtőméretek 14x14, 14x20 cm, 1 1/2 téglá vastag (38 cm) falban. Egy- egy kürtőbe (lakóházak kályhafűtéseit figyelembevéve) kettő, a 14x20 cm-es kürtőbe három tüzelőberendezés köthető, de csak egy szinten.

Többszintes épületekben színtenként növelni kell a kürtők számát mert egy kürtőbe több szinten (a füstgázok átáramlását megelőzendő) bekötést kialakítani szigorúan tilos!

Oroszkémények építésének legfontosabb szabályai a következők:

- Az önálló kéménypilléreket alapozni, és (vízszintes falszigeteléssel) szigetelni kell!
- Határolófalakban, nedvesség ellen szigetelt falakban, az érintkező kürtőfalat vastagabbra (3/4..1 téglá) kell felvenni!
- A kürtőt alul koromzsákkal, koromzsákajtóval ellátott tisztitónyilással kell kialakítani!
- Gázfútés esetén a kondenzvíz összegyűjtését, elvezetését meg kell oldani!
- A kéménykürtőt belülőr vakolni nem szabad, de a hatégakat teljesen, "gáztömören" ki kell tölteni, keni!
- Tetőérben, padlásra a kéményt kívülről vakolni kell!
- Tetőn kívül célszerű a gyors lehúlés ellen a kürtőfalat megvastagítani (3/4 téglára), teli hégzolással, vakolás mérkől kialakítani!

A kéményfedők elhelyezésének magasságát építési előírások szabályozzák magas-, és lapostetők esetén, a szomszédos épület helyének méreteinek, az uralkodó szélrétegnek függvényében.

A kéménypillé magasságát a legfelső tüzelőberendezés rostélya felett 5,00 m-nél alacsonyabb felvenni nem szabad!

Kéménypillé és faanyagú, (vagy más gyúlékony) épületszerkezet között legalább 12 cm távolságot kell tartani.

Többszintes épületek kéményeit gyakran el kell húzni, mert

- a kürtő útjába eső idegen szerkezetet "ki kell kerülni",
- a tüzelőberendezések bekötéseit, a koromzsákokat, tisztitónyilásokat szintenként azonos helyen szeretnénk kialakítani,
- a tetőérben az egymás melletti kürtőket célszerű egy kéménytestbe összefogni, hogy minél kevesebb tetőáttörésre (kevesebb hibaforrás, beázás lehetség) legyen szükség,
- a kéménytestet célszerű olyan irányban elhúzni, hogy a gerinchez minél közelebb kerüljön.
Figyelem: az elhúzott kéménytest csak teherhordó falszakaszra kerülhet!

- A kéményelhúzás akkor szabályos, ha
- a ferde elhúzás szöge a függőlegesszel legfeljebb 30°-os szöget zár be,
- a kürtőkeresztmetszet méreteit az elhúzás szakaszán is megtartja,
- az elhúzás csak egyirányban és csak egyszer ismétlődik,
- a kürtőfalat az elhúzás tengelyére merőleges rétegekben falazzák,
- a ferde felületeket, sarkokat csorbulás ellen (golyós tisztítás) vasakkal védik.

A 4-30. ábrán a falazott kéményekkel kapcsolatos elrendezési és részletmegoldások találhatók.

Fogalmazza meg
- a kémények téglakötésének szabályait (hasonlítsa össze az S/15-1. ábrával falvég-kötéseivel!),
- a tetőn kívül vezetett kémény- magasság meghatározásának szabályait,
- kézi falazóelemes falazat és kéménypillér kapcsolatának módjait!
Központi fűtések kéményei

A központi fűtések kéményei épületgépész által meghatározott kürtökeresztmetszetű és magasságú őnálló építmények. A kapcsolódó épülettől önállóan alapozva, és a hőmozgások gátolt lejátszódását megelőzendő, a többi szerkezetből mozgási hézagokkal, elválasztva építik. Építhetők
- hagyományos falazott kivitelben,
- vasbetonból,
- kettős falú, hőszigetelt fémlamezelemekből szerelve.
A falazott központifűtés-kémény legkisebb kürtömérete 27x27 cm, falvastagsága legalább 25 cm. (kisméretű téglából készítve)
A párhuzamosan sorolt kazánok füstcsőbekötéseit egy vízszintes füstcsatornán a "rőkatorkon" keresztül kötik be a kéménybe. A rőkatorkot az (általában szigetelt) padló és falszerkezetektől légréteggel elválasztva, lábakra állítva építik. (vasbetonlemezek közé falazzák, - régebben dongaboltozattal fedték).

Gyűjtőkémények

A gyűjtőkéménybe több szint azonos jellegű, fűtőközegű tüzelőberendezéseit lehet bekötni. A gyűjtőkéményeket ennek megfelelően fölfele bővülő, kör kereszmetszetű kürtövel, és a fokozott hőterhelés miatt hőszigetelt, (esetleg kettős) külső köpennyel ellátva építik. A gyűjtőkémények is önálló, a födémektől is elkölöntendő szerkezetek, ezért falazott, vagy öntöttfalú (rubic) aknaiba kerülnek. A teljes magasságú kéménypillér terheit önálló tőmbalap veszi át, a födémekeket sem terheli. A kéményfejet általában huzatnövelő toldatakkal látják el.

A gyűjtőkéményeket nem lehet elhúzni. A többszintű bekötések miatt a gyűjtőkémények tókéletes gáztömörülése elengedhetetlen követelmény. A bekötések, koromzsákok, tisztítónyilások-, ajtók kizárólag előregyártott idomok beépítésével valósíthatók meg. Az elemek fűrása, faragása, átalakítása tilos!

A gyűjtőkémények, fokozott és állandó ellenőrző, fenntartási tevékenységet igényelnek. A feltartatlan hibák halálos kimenetelű füstgázmergezésekhez is vezettek már, ezért egy időszakban a gyűjtőkémények építését betiltották. Az elhasználódott kiegészítő kéményeket utólag behúzott (pl. rozsdamentes acél) béléscsövekkel kell felújítani, a biztonságos használatra alkalmassá tenni!

A kettős falú kémények vibropréselt beton elemei közötti teret hőálló hőszigetelőanyaggal (pl. kovaföldliszt) töltötték ki. Egyesített falú kémények hőszigetelő tulajdonságú könnyübetonból készült elemekből építhetők.

Egyesített falú könnyübeton-elemes gyűjtőkémény szerkezeti részletei láthatók a 4-31. ábrán.
Figyeljük meg, hogy
- a többszintmagas kémény sarkaiban vezetett - cementhabarcscsal kiinjektált - merevítő vasalással készül,
- a födémen - független mozgását biztosító - nyílásban halad keresztül, stb. ...
Előregyártott elemes kéményrendszerek

Az egységesesomagban kapható kéményrendszer minden, a kémény felépítéséhez szükséges elemet, alkatrészt, anyagot, segédeszközt és építési útmutatot tartalmaz. A 4-32. ábrán bemutatott "SCHIEDEL" rendszerű kémény elemcsaládja

– könnyübeton köpenyfallal, alacsony hőszigetelőértékű,
– samott béléscsővel és ásványgyapottal növelt hőszigetelésű, és
– légcsatornákkal hátszöltetett szerkezétváltozatokkal bír.

A növelt hőszigetelőkapacitás és a hátszöltözés megelőzi a füstgázok lehűlését, és a káros anyagok (kátrány,..) lecsapódását, ezáltal növelte a szerkezet élettartamát.
Gyármények

A gyármények magasságát a szükséges huzat mértéke mellett elsősorban környezetvédelmi szempontok határozzák meg. A kibocsátott füstgázok széndioxid, szénmonoxid, kéndioxid, kátrány, pernye, stb. ... tartalma nagy magasságba juttatva (közvetlenül !) kevésbé szennyezi a légkört. Ma már a szigorú építési, környezetvédelmi szabályok a nagy magasság mellett füstszűrő filterek felszerelését is előírják.

A magas kémények és alapozásuk méretezésekor meghatározó a szélterhék jelentősége.
A gyárkéményeket régen téglából (körgyűrűcikk alakú, úgynevezett sugárteglából) falazták, manapság inkább öntöttfalas monolit szerkezettel (pl. csuszószaluzással) építik, vagy előregyártva vasbeton elemekből, acélsövekből szerelik.

4.6.2 Szellőzők

A bezárt terekben elhasználódott, elszennyeződött levegő pótlását, felfrissítését, cseréjét szolgálja a szellőzés, szellőztetés, emberi tartózkodás, normális életfunkciók és/vagy technológiai folyamatok feltételeinek biztosítására.

A természetes (gravitációs) szellőzés mellett, gépi (ventillátoros) szellőztetéssel érhető el a rendeltetésnek, használati körülményeknek megfelelő sűrűségű légcsere, amelynek mértékét pl. az óránkénti légesereszámmal lehet előírni.

A továbbiakban a szellőző(tet) és épületszerekkezetedivel foglalkozunk. A mesterséges módszerek részletes tárgyalása a Magasépítő speciális stúdium Épületgépészet c. tantárgyában kerül sorra.

A szellőzők feladata
– az elhasznált levegőt elvezetni,
– a friss külső levegőt (szűkség szerint szurve, hútve, vagy melegítve) bevezetni, ezáltal a helyiségben
– megfelelő hőmérsékletet,
– folyamatosan tisza levegőt,
– állandó - de kellemetlen huzthatatástól mentes - légáramlással biztosítani.

A természetes légsere történhet
– önszellőzéssel (tömítetlenségek, diffúzió);
– ablak-, ajtó szellőzéssel (esetleg külön szellőzőszárnyakkal, pl. "fortocska"-Szibéria);
– átszellőzéssel, (belső helyiség vízszintes, legfeljebb 2 m hosszú, szellőzőcsatornás homlokzati kapcsolata);
– kürtőszellőzéssel (függőleges légsatornák)

Az átszellőzés és a kürtőszellőzések elvi működési vázlatai, építési változatai a 4-33. ábrán találhatók.

Írjuk le
– a frisslevegő-bezetés, utánpótlás és a használtlevégő-elvezetés módjait,
– egy légudvarhoz, légaknához csatlakoztatható helyiségek listáját,
– az önálló kürtő, előregyártott elemekből készített szellőzők építési szabályait (keressünk analógiákat !)!
Mellék- és gyűjtőcsatornás szellőzők vibropréselt betonelemes, és vékonyfalú (műanyag, alumínium) egységekből szerelt változatait tanulmányozhatjuk a 4-34. ábrán. A gyűjtőkúrtós szellőzőkbe csatlakozó mellékcsatornákkal legfeljebb 10 azonos jellegű helyiség köthető be összesen a különböző szintekről. A frisslevégőbevezetésre külön mellékcsatornák szolgálhatnak. (kétmellékcsatornás, gyűjtőkúrtós szellőzés)
MELLÉKCSATORNÁS GYŰJTŐKÜRTŐS
SZELLŐZŐ RÉSZLETE

bekötés
metszet

kerámkarác

4-34/a. ábra
EGY ÉS KÉT MELLÉKCSATORNÁS VÉKONYFALÚ GYŰJTÖKÜRTŐS SZELLŐZŐ

4-34/b. ábra